首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9117篇
  免费   1664篇
  国内免费   2175篇
测绘学   463篇
大气科学   1894篇
地球物理   2491篇
地质学   4569篇
海洋学   900篇
天文学   512篇
综合类   927篇
自然地理   1200篇
  2024年   39篇
  2023年   127篇
  2022年   400篇
  2021年   444篇
  2020年   379篇
  2019年   491篇
  2018年   530篇
  2017年   467篇
  2016年   550篇
  2015年   455篇
  2014年   564篇
  2013年   513篇
  2012年   484篇
  2011年   566篇
  2010年   531篇
  2009年   498篇
  2008年   457篇
  2007年   473篇
  2006年   354篇
  2005年   290篇
  2004年   279篇
  2003年   275篇
  2002年   284篇
  2001年   258篇
  2000年   302篇
  1999年   388篇
  1998年   328篇
  1997年   338篇
  1996年   275篇
  1995年   241篇
  1994年   288篇
  1993年   215篇
  1992年   166篇
  1991年   129篇
  1990年   103篇
  1989年   77篇
  1988年   99篇
  1987年   50篇
  1986年   45篇
  1985年   40篇
  1984年   35篇
  1983年   32篇
  1982年   35篇
  1981年   27篇
  1980年   7篇
  1979年   10篇
  1978年   5篇
  1975年   3篇
  1958年   7篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
271.
Surface roughness and slope gradient are two important factors influencing soil erosion. The objective of this study was to investigate the interaction of surface roughness and slope gradient in controlling soil loss from sloping farmland due to water erosion on the Loess Plateau, China. Following the surface features of sloping farmland in the plateau region, we manually prepared rough surfaces using four tillage practices (contour drilling, artificial digging, manual hoeing, and contour plowing), with a smooth surface as the control measure. Five slope gradients (3°, 5°, 10°, 15°, and 20°) and two rainfall intensities (60 and 90 mm/hr) were considered in the artificial rainfall simulation experiment. The results showed that the runoff volume and sediment yield increased with increasing slope gradient under the same tillage treatment. At gentle slope gradients (e.g., 3° and 5°), the increase in surface roughness prevented the runoff and sediment production, that is, the surface roughness reduced the positive effect of slope gradient on the runoff volume and sediment yield to a certain extent. At steep slope gradients, however, the enhancing effect of slope gradient on soil erosion gradually increased and surpassed the reduction effect of surface roughness. This study reveals the existence of a critical slope gradient that influences the interaction of surface roughness and slope gradient in controlling soil erosion on sloping farmland. If the slope gradient is equal to or less than the critical value, an increase in surface roughness would decrease soil erosion. Otherwise, the increase in surface roughness would be ineffective for preventing soil erosion. The critical slope gradient would be smaller under higher rainfall intensity. These findings are helpful for us to understand the process of soil erosion and relevant for supporting soil and water conservation in the Loess Plateau region of China.  相似文献   
272.
273.
274.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   
275.
Stable isotopes in precipitation are useful tracers to strengthen understanding of climate change and hydrological processes. In this study, the moisture sources of 190 precipitation events in Beijing were analysed using the Hybrid Single‐particle Lagrangian Integrated Trajectory model, based on which we studied the relation between variations in precipitation δ18O and dynamics in moisture sources and atmospheric circulation in seasonal and interannual timescales. Categorization of 7 groups of moisture sources was performed, among which oceanic moisture sources presented lower δ18O in precipitation than continental moisture sources. The results show that seasonal variations of precipitation δ18O were caused by changes of moisture sources. In summer, moisture from proximal oceans dominated vapour transport to Beijing due to increasing monsoon strength and resulted in a relatively small variation of precipitation δ18O. At the interannual timescale, the variations of δ18O in summer precipitation were related to dynamics in oceanic moistures, showing depleted values when the contribution of oceanic moistures, especially the proportion of long‐distance oceanic moisture, was high. Further analysis indicated that changes of oceanic moisture sources were controlled by the strength of summer monsoons. These findings address the complexity of moisture sources in midlatitude monsoon areas and suggest that isotopic signals in precipitation have the potential to deduce changes in moisture sources and atmospheric circulation and can therefore serve for palaeoclimate reconstruction.  相似文献   
276.
Surface soil moisture (SSM) is a critical variable for understanding water and energy flux between the atmosphere and the Earth's surface. An easy to apply algorithm for deriving SSM time series that primarily uses temporal parameters derived from simulated and in situ datasets has recently been reported. This algorithm must be assessed for different biophysical and atmospheric conditions by using actual geostationary satellite images. In this study, two currently available coarse‐scale SSM datasets (microwave and reanalysis product) and aggregated in situ SSM measurements were implemented to calibrate the time‐invariable coefficients of the SSM retrieval algorithm for conditions in which conventional observations are rare. These coefficients were subsequently used to obtain SSM time series directly from Meteosat Second Generation (MSG) images over the study area of a well‐organized soil moisture network named REMEDHUS in Spain. The results show a high degree of consistency between the estimated and actual SSM time series values when using the three SSM dataset‐calibrated time‐invariable coefficients to retrieve SSM, with coefficients of determination (R2) varying from 0.304 to 0.534 and root mean square errors ranging from 0.020 m3/m3 to 0.029 m3/m3. Further evaluation with different land use types results in acceptable debiased root mean square errors between 0.021 m3/m3 and 0.048 m3/m3 when comparing the estimated MSG pixel‐scale SSM with in situ measurements. These results indicate that the investigated method is practical for deriving time‐invariable coefficients when using publicly accessed coarse‐scale SSM datasets, which is beneficial for generating continuous SSM dataset at the MSG pixel scale.  相似文献   
277.
In this paper, the numerical manifold method (NMM) is extended to study wave propagation across rock masses. First, improvements to the system equations, contact treatment, and boundary conditions of the NMM are performed, where new system equations are derived based on the Newmark assumption of the space–time relationship, the edge‐to‐edge contact treatment is further developed for the NMM to handle stress wave propagation across discontinuities, and the viscous non‐reflection boundary condition is derived based on the energy minimisation principle. After the modification, numerical comparisons between the original and improved NMM are presented. The results show that the original system equations result in artificial numerical damping, which can be overcome by the Newmark system equations. Meanwhile, the original contact scheme suffers some calculation problems when modelling stress wave propagation across a discontinuity, which can be solved by the proposed edge‐to‐edge contact scheme. Subsequently, the influence of the mesh size and time step on the improved NMM for stress wave propagation is studied. Finally, 2D wave propagation is modelled, and the model's results are in good agreement with the analytical solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
278.
279.
280.
Three‐dimensional seismic data were used to infer how bottom currents control unidirectional channel migration. Bottom currents flowing towards the steep bank would deflect the upper part of sediment gravity flows at an orientation of 1° to 11° to the steep bank, yielding a helical flow circulation consisting of a faster near‐surface flow towards the steep bank and a slower basal return flow towards the gentle bank. This helical flow model is evidenced by the occurrence of bigger, muddier (suggested by low‐amplitude seismic reflections) lateral accretion deposits and gentle channel wall with downlap terminations on the gentle bank and by smaller, sandier (indicated by high‐amplitude seismic reflectors) channel fills and steep channel walls with truncation terminations on the steep bank. This helical flow circulation promotes asymmetrical depositional patterns with dipping accretion sets restricted to the gentle bank, which restricts the development of sinuosity and yields unidirectional channel migration. These results aid in obtaining a complete picture of flow processes and sedimentation in submarine channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号