首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28889篇
  免费   5254篇
  国内免费   6939篇
测绘学   1270篇
大气科学   6591篇
地球物理   7501篇
地质学   14376篇
海洋学   3334篇
天文学   1428篇
综合类   3263篇
自然地理   3319篇
  2024年   79篇
  2023年   404篇
  2022年   1153篇
  2021年   1351篇
  2020年   1177篇
  2019年   1270篇
  2018年   1549篇
  2017年   1428篇
  2016年   1655篇
  2015年   1286篇
  2014年   1709篇
  2013年   1551篇
  2012年   1493篇
  2011年   1532篇
  2010年   1664篇
  2009年   1690篇
  2008年   1440篇
  2007年   1399篇
  2006年   1174篇
  2005年   1066篇
  2004年   847篇
  2003年   851篇
  2002年   836篇
  2001年   808篇
  2000年   1008篇
  1999年   1452篇
  1998年   1214篇
  1997年   1297篇
  1996年   1080篇
  1995年   992篇
  1994年   892篇
  1993年   780篇
  1992年   632篇
  1991年   451篇
  1990年   310篇
  1989年   344篇
  1988年   291篇
  1987年   199篇
  1986年   161篇
  1985年   115篇
  1984年   100篇
  1983年   77篇
  1982年   76篇
  1981年   53篇
  1980年   45篇
  1979年   27篇
  1978年   16篇
  1977年   7篇
  1976年   6篇
  1958年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   
982.
This paper presents semi‐analytical solutions to Fredlund and Hasan's one‐dimensional consolidation of unsaturated soils with semi‐permeable drainage boundary under time‐dependent loadings. Two variables are introduced to transform two coupled governing equations of pore‐water and pore‐air pressures into an equivalent set of partial differential equations, which are easily solved by the Laplace transform. The pore‐water pressure, pore‐air pressure and settlement are obtained in the Laplace domain. Crump's method is adopted to perform the inverse Laplace transform in order to obtain semi‐analytical solutions in time domain. It is shown that the present solutions are more general and have a good agreement with the existing solutions from literatures. Furthermore, the current solutions can also be degenerated into conventional solutions to one‐dimensional consolidation of unsaturated soils with homogeneous boundaries. Finally, several numerical examples are provided to illustrate consolidation behavior of unsaturated soils under four types of time‐dependent loadings, including instantaneous loading, ramp loading, exponential loading and sinusoidal loading. Parametric studies are illustrated by variations of pore‐air pressure, pore‐water pressure and settlement at different values of the ratio of air–water permeability coefficient, depth and loading parameters. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
983.
Li  Qingsong  Dong  Yi  Wang  Dingjie  Zhang  Liang  Wu  Jie 《GPS Solutions》2021,25(1):1-13
GPS Solutions - The GPS satellite transmitter antenna phase center offsets (PCOs) can be estimated in a global adjustment by constraining the ground station coordinates to the current International...  相似文献   
984.
As a result of global warming induced permafrost degradation in recent decades, thermokarst lakes in the Qinghai–Tibet plateau (QTP) have been regulating local hydrological and ecological processes. Simulations with coupled moisture–heat numerical models in the Beiluhe basin (located in the hinterland of permafrost regions on the QTP) have provided insights into the interaction between groundwater flow and the freeze–thaw process. A total of 30 modified SUTRA scenarios were established to examine the effects of hydrodynamic forces, permeability, and climate on thermokarst lakes. The results indicate that the hydrodynamic condition variables regulate the permafrost degradation around the lakes. In case groundwater recharges to the lake, a low–temperature groundwater flow stimulates the expansion of the surrounding thawing regions through thermal convection. The thawing rate of the permafrost underlying the lake intensifies when groundwater is discharged from the lake. Under different permeability conditions, spatiotemporal variations in the active layer thickness significantly influence the occurrence of an open talik at the lake bottom. A warmer and wetter climate will inevitably lead to a sharp decrease in the upper limit of the surrounding permafrost, with a continual decrease in the duration of open talik events. Overall, our results underscore that comprehensive consideration of the relevant hydrologic processes is critical for improving the understanding of environmental and ecological changes in cold environments.  相似文献   
985.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   
986.
We present a drought reconstruction for southeastern China based on a tree‐ring width chronology of Cryptomeria fortunei developed from two sampling sites in central Fujian. A reconstruction of July–February drought variability, spanning AD 1855–2011, was developed by calibrating total tree‐ring width data with the self‐calibrating Palmer drought severity index (scPDSI). The reconstruction was verified against an independent data set, and accounts for 36% of the actual scPDSI variance during the period 1955–2011. Relatively dry intervals were reconstructed between AD 1859–1880, 1899–1911, 1927–1933, 1946–1959, 1964–1970 and 1987–1997. Relatively wet conditions prevailed during 1855–1858, 1881–1898, 1912–1926, 1934–1945, 1960–1963, 1971–1986 and 1998–2011. Comparisons between our scPDSI reconstruction and a moisture‐sensitive tree‐ring width record from Vietnam revealed consistencies between the two data sets, suggesting similar drought regimes. Spectral peaks of 2.2–6.4 years may be indicative of El Niño‐Southern Oscillation (ENSO) activity, as also suggested by the significant correlations with sea surface temperatures (SSTs) in the eastern equatorial and southeastern Pacific Ocean and an extreme event analysis. The analysis of links between our scPDSI reconstruction and the large‐scale regional climatic variation shows that there is a relationship between regional drought variation and East Asian summer monsoon (EASM) intensity.  相似文献   
987.
988.
989.
The axisymmetric formulation of the governing equations for geomechanics in the framework of smoothed particle hydrodynamics (SPH) is presented in this study. Two forms of SPH discretization for the motion equations, which are labeled as form I and form II, are proposed, and the methods to compute the hoop stress and strain terms including hoop strain rate and the acceleration introduced by the hoop stress are compared. To avoid possible singularity problem near the axis of symmetry, a perfectly smooth contact along with ghost particles are applied to prevent the real particles from overly approaching the axis of symmetry to remove this potential singularity. In addition, the Mohr–Coulomb constitutive model is implemented into the SPH formulation in describing soil behavior. Four numerical tests are carried out to validate and compare the accuracy and stability of the proposed algorithms, and their results are compared with analytical solutions and results from FEM analysis. The performance in these comparisons suggests that SPH II with hoop terms computed through direct hoop method is more stable than the others, and the adoption of contact for the symmetric axis is efficient in eliminating the singularity problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
990.
Xuan Wang  Ian Baker 《水文研究》2017,31(4):871-879
To simplify the complex snow structures that occur in nature, polycrystalline ice spheres were produced and arranged vertically to model the sintering process. By controlling the temperatures on both the top and bottom of the ice sphere array, the effect of upward and downward vapor transfers was examined. The evolution of the neck areas between ice spheres was observed using X‐ray computed microtomography. As frequently observed under the basal part of a snow layer and previous experiments of snow temperature gradient metamorphism, depth hoar structures were formed along neck areas and their formation was found to be directly related to the vapor transfer direction. To model the temperature gradient inversion that can be induced in nature by daily cycles of radiative heating and cooling, we also performed sign‐alternating temperature gradient experiments on the ice sphere arrays. The morphological evolution of the neck and the associated vapor transfer were examined through image analysis and 2D modeling. The final microstructures of the neck area turned out to be a symmetrical distribution of ice protrusions bridging neighboring ice spheres.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号