Using more than three million Landsat satellite images, this research developed the first global impervious surface area (GISA) dataset from 1972 to 2019. Based on 120,777 independent and random reference sites from 270 cities all over the world, the omission error, commission error, and F-score of GISA are 5.16%, 0.82%, and 0.954, respectively. Compared to the existing global datasets, the merits of GISA include: (1) It provided the global ISA maps before the year of 1985, and showed the longest time span (1972–2019) and the highest accuracy (in terms of a large number of randomly selected and third-party validation sample sets); (2) it presented a new global ISA mapping method including a semi-automatic global sample collection, a locally adaptive classification strategy, and a spatio-temporal post-processing procedure; and (3) it extracted ISA from the whole global land area (not from an urban mask) and hence reduced the underestimation. Moreover, on the basis of GISA, the long time series global urban expansion pattern (GUEP) has been calculated for the first time, and the pattern of continents and representative countries were analyzed. The two new datasets (GISA and GUEP) produced in this study can contribute to further understanding on the human’s utilization and reformation to nature during the past half century, and can be freely download from http://irsip.whu.edu.cn/resources/dataweb.php.
Remote sensing image segmentation is the basis of image understanding and analysis. However, the precision and the speed of segmentation can not meet the need of image analysis, due to strong uncertainty and rich texture details of remote sensing images. We proposed a new segmentation method based on Adaptive Genetic Algorithm (AGA) and Alternative Fuzzy C-Means (AFCM). Segmentation thresholds were identified by AGA. Then the image was segmented by AFCM. The results indicate that the precision and the speed of segmentation have been greatly increased, and the accuracy of threshold selection is much higher compared with traditional Otsu and Fuzzy C-Means (FCM) segmentation methods. The segmentation results also show that multi-thresholds segmentation has been achieved by combining AGA with AFCM. 相似文献