Two Chinese immature oil shales from the continental deposits of kerogen type I and II have been thermally treated combined with the technique of supercritical fluid extraction at 630–650 K and 15–25 MPa in a semi-continuous laboratory scale apparatus. Toluence is selected as the solvent. Up to 70–80% of the kerogen matrix can be converted to a thermal bitumen and extracted simultaneously. The chemical structural parameters from the NMR, IR, XRD, ESR and EA analyses of the kerogen and the thermal bitumen show striking resemblance in nature. It implies that the thermal bitumen is primarily a depolymerized product of the kerogen. Based on the GC/MS spectra of the aliphatic eluate of the thermal bitumen, the predominance of the odd/even ratio of the alkanes and the epimeric ratios, such as 20S(20S + 20R) of C-29 steranes and 22S/(22S + 22R) of C-32 terpanes, show that the maturity of the thermal bitumen from these oil shales is comparable to that of commercial immature oils from East China. The thermal bitumen is thought to be an intermediate product of the thermal degradation of kerogen.Since the thermal bitumen is mainly composed of asphaltenes and resins, it has a structure of gel. The gel-state bitumen may turn to sol-state readily due to its low aromaticity and polarity, or due to selective adsorption of asphaltenes by clay minerals. Then the migration potential of the bitumen is enhanced.Consequently, under favorable geological conditions, the thermal depolymerization of kerogen seems to be a probable mechanism to explain the formation of immature oils. 相似文献
河流地质考古学是基于地层研究河流和考古遗址之间关系的学科。近年来我们在河南省内黄县开展的河流地质考古研究揭示了黄河复杂的演化历史,在此基础上进一步探讨了古代人类活动与周围环境的相互作用。本文主要介绍了2010~2016年我们在河南省内黄县3个全新世遗址(岸上、三杨庄和大张龙村)的地质考古工作中所取得的成果。研究区域内遗址的地层记录表明,许多考古遗址被深埋于地下,并可能影响了3000 a B.P.以来的河流沉积过程。我们在岸上遗址发掘了A、B、C、D共4处青铜时代的沟渠遗迹,这些沟渠的堆筑可能影响了后期的沉积过程并导致了遗址周边微地貌的改变;在三杨庄遗址识别出了多层不同时期的人为古土壤,包括新石器晚期、战国时期、汉代和唐代;在大张龙村发现了北宋时期黄河泛滥沉积物,其沉积过程可能受周边村落遗址的影响。根据测得的14C年代和沉积层厚度,本研究进一步对这3处遗址的沉积速率进行了估算,并与前人对华北平原沉积速率的相关研究进行了对比。结果表明,这3处遗址所显示的沉积速率自3000 a B.P.开始显著增加,与对早期历史时期黄河河道沉积速率的估算结果相吻合。因此,基于遗址的地质考古研究能够为探索人与环境的互动关系提供大量信息。未来的工作中,我们需要开展更多基于考古遗址的河流地质考古研究,以深入探讨华北平原的自然沉积过程与文明演进过程之间的关系。
The gas outburst, resulting in substantial economic losses and even casualties, is the biggest obstacle in coal mines, mostly caused by an imbalance of gas-geological structure. For accurately measuring this proneness, in this paper, a novel evaluation method was proposed based on the gas-geology theory. In this method, a standardization model of statistical units was presented first, which was used to standardize and quantify the 12 chosen gas-geological factors; and then, an associated function was established for computing the gas-geological complexity index (GCI). With increasing GCI values, the evaluated area was divided into four grades: simple, medium, complex, and extremely complex region, in which the associated proneness of outbursts was SAFE, POTENTIAL, HIGH, STRONG, respectively. Taking the XueHu Coal Mine as an example, site verification was carried out with a good result. Research and application indicate that (1) gas outburst is unbalanced and closely related to the complex of the gas geological structure, showing a greater GCI leads to a higher outburst possibility; (2) the most likely area for the gas outburst is the extremely complex region and the transition zone between adjacent areas with different GCI grades; (3) upgrading-targeted control measures are the best way for preventing and controlling disasters caused by the gas and outburst unbalanced distribution. This novel method provided a reliable quantity approach for predicting and zonally managing gas outbursts and improving the effectiveness of outbursts prevention.
Migmatites are predominant in the North Qinling (NQ) orogen, but their formation ages are poorly constrained. This paper presents a combined study of cathodoluminescence imaging, U–Pb age, trace element and Hf isotopes of zircon in migmatites from the NQ unit. In the migmatites, most zircon grains occur as new, homogeneous crystals, while some are present as overgrowth rims around inherited cores. Morphological and trace element features suggest that the zircon crystals are metamorphic and formed during partial melting. The inherited cores have oscillatory zoning and yield U–Pb ages of c. 900 Ma, representing their protolith ages. The early Neoproterozoic protoliths probably formed in an active continental margin, being a response to the assembly of the supercontinent Rodinia. The migmatite zircon yields Hf model ages of 1911 ± 20 to 990 ± 22 Ma, indicating that the protoliths were derived from reworking of Palaeoproterozoic to Neoproterozoic crustal materials. The anatexis zircon yields formation ages ranging from 455 ± 5 to 420 ± 4 Ma, with a peak at c. 435 Ma. Combined with previous results, we suggest that the migmatization of the NQ terrane occurred at c. 455–400 Ma. The migmatization was c. 50 Ma later than the c. 490 Ma ultra‐high‐P (UHP) metamorphism, indicating that they occurred in two independent tectonic events. By contrast, the migmatization was coeval with the granulite facies metamorphism and the granitic magmatism in the NQ unit, which collectively argue for their formation due to the northward subduction of the Shangdan Ocean. UHP rocks were distributed mainly along the northern margin and occasionally in the inner part of the NQ unit, indicating that they were exhumed along the northern edge and detached from the basement by the subsequent migmatization process. 相似文献