River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems. 相似文献
This paper presents the results of field tests performed to investigate the compressive bearing capacity of pre-bored grouted planted (PGP) pile with enlarged grout base focusing on its base bearing capacity. The bi-directional O-cell load test was conducted to evaluate the behavior of full scale PGP piles. The test results show that the pile head displacements needed to fully mobilize the shaft resistance were 5.9% and 6.4% D (D is pile diameter), respectively, of two test piles, owing to the large elastic shortening of pile shaft. Furthermore, the results demonstrated that the PHC nodular pile base and grout body at the enlarged base could act as a unit in the loading process, and the enlarged grout base could effectively promote the base bearing capacity of PGP pile through increasing the base area. The normalized base resistances (unit base resistance/average cone base resistance) of two test piles were 0.17 and 0.19, respectively, when the base displacement reached 5% Db (Db is pile base diameter). The permeation of grout into the silty sand layer under pile base increased the elastic modulus of silty sand, which could help to decrease pile head displacement under working load.