The complete surface deformation of 2015 Mw 8.3 Illapel, Chile earthquake is obtained using SAR interferograms obtained for descending and ascending Sentinel-1 orbits. We find that the Illapel event is predominantly thrust, as expected for an earthquake on the interface between the Nazca and South America plates, with a slight right-lateral strike slip component. The maximum thrust-slip and right-lateral strike slip reach 8.3 and 1.5 m, respectively, both located at a depth of 8 km, northwest to the epicenter. The total estimated seismic moment is 3.28 × 1021 N.m, corresponding to a moment magnitude Mw 8.27. In our model, the rupture breaks all the way up to the sea-floor at the trench, which is consistent with the destructive tsunami following the earthquake. We also find the slip distribution correlates closely with previous estimates of interseismic locking distribution. We argue that positive coulomb stress changes caused by the Illapel earthquake may favor earthquakes on the extensional faults in this area. Finally, based on our inferred coseismic slip model and coulomb stress calculation, we envision that the subduction interface that last slipped in the 1922 Mw 8.4 Vallenar earthquake might be near the upper end of its seismic quiescence, and the earthquake potential in this region is urgent. 相似文献
Science China Earth Sciences - The deep crustal structure of the Northwest Sub-basin (NWSB) of the South China Sea (SCS) is of great importance for understanding the tectonic nature of the... 相似文献
Although intensive research of the influence of ground motion duration on structural cumulative damage has been carried out, the influence of dynamic responses in underground tunnels remains a heated debate. This study attempts to highlight the importance of the ground motion duration effect on hydraulic tunnels subjected to deep-focus earthquakes. In the study, a set of 18 recorded accelerograms with a wide-range of durations were employed. A spectrally equivalent method serves to distinguish the effect of duration from other ground motion features, and then the seismic input model was simulated using SV-wave excitation based on a viscous-spring boundary, which was verified by the time-domain waves analysis method. The nonlinear analysis results demonstrate that the risk of collapse of the hydraulic tunnel is higher under long-duration ground motion than that of short-duration ground motion of the same seismic intensity. In a low intensity earthquake, the ground motion duration has little effect on the damage energy consumption of a hydraulic tunnel lining, but in a high intensity earthquake, dissipation of the damage energy and damage index of concrete shows a nonlinear growth trend accompanied by the increase of ground motion duration, which has a great influence on the deformation and stress of hydraulic tunnels, and correlation analysis shows that the correlation coefficient is greater than 0.8. Therefore, the duration of ground motion should be taken into consideration except for its intensity and frequency content in the design of hydraulic tunnel, and evaluation of seismic risk.
In this study, we propose a new method to determine full moment tensor solution for induced seismicity. This method generalizes the full waveform matching algorithm we have developed to determine the double-couple (DC) focal mechanism based on the neighbourhood algorithm. One major difference between the new method and the former one is that we adopt a new misfit function to constrain the candidate moment tensor solutions with respect to a reference DC solution in addition to other misfit terms characterizing the waveform matching. Through synthetic tests using a real passive seismic survey geometry, the results show the new constraint can help better recover the DC components of inverted moment tensors. We further investigate how errors in the velocity model and source location affect the moment tensor solution. The synthetic test results indicate that the constrained inversion is robust in recovering both the DC and non-DC components. We also test the proposed method on several real induced events in an oil/gas field in Oman using the same observation system as synthetic tests. While it is found that the full moment tensor solutions without using the DC constraints have much larger non-DC components than solutions with the DC constraints, both solutions are able to fit the observed waveforms at similar levels. The synthetic and real test results suggest the proposed DC constrained inversion method can reliably retrieve full moment tensor solutions for the induced seismicity. 相似文献
In this paper, we use the unstructured grid model SCHISM to simulate the thermohydrodynamics in a chain of baroclinic, interconnected basins. The model shows a good skill in simulating the horizontal circulation and vertical profiles of temperature, salinity, and currents. The magnitude and phases of the seasonal changes of circulation are consistent with earlier observations. Among the mesoscale and subbasin-scale circulation features that are realistically simulated are the anticyclonic coastal eddies, the Sebastopol and Batumi eddies, the Marmara Sea outflow around the southern coast of the Limnos Island, and the pathway of the cold water originating from the shelf. The superiority of the simulations compared to earlier numerical studies is demonstrated with the example of model capabilities to resolve the strait dynamics, gravity currents originating from the straits, high-salinity bottom layer on the shallow shelf, as well as the multiple intrusions from the Bosporus Strait down to 700 m depth. The warm temperature intrusions from the strait produce the warm water mass in the intermediate layers of the Black Sea. One novel result is that the seasonal intensification of circulation affects the interbasin exchange, thus allowing us to formulate the concept of circulation-controlled interbasin exchange. To the best of our knowledge, the present numerical simulations, for the first time, suggest that the sea level in the interior part of the Black Sea can be lower than the sea level in the Marmara Sea and even in some parts of the Aegean Sea. The comparison with observations shows that the timings and magnitude of exchange flows are also realistically simulated, along with the blocking events. The short-term variability of the strait transports is largely controlled by the anomalies of wind. The simulations demonstrate the crucial role of the narrow and shallow strait of Bosporus in separating the two pairs of basins: Aegean-Marmara Seas from one side and Azov-Black Seas from the other side. The straits of Kerch and Dardanelles provide sufficient interbasin connectivity that prevents large phase lags of the sea levels in the neighboring basins. The two-layer flows in the three straits considered here show different dependencies upon the net transport, and the spatial variability of this dependence is also quite pronounced. We show that the blocking of the surface flow can occur at different net transports, thus casting doubt on a previous approach of using simple relationships to prescribe (steady) outflow and inflow. Specific attention is paid to the role of synoptic atmospheric forcing for the basin-wide circulation and redistribution of mass in the Black Sea. An important controlling process is the propagation of coastal waves. One major conclusion from this research is that modeling the individual basins separately could result in large inaccuracies because of the critical importance of the cascading character of these interconnected basins. 相似文献
A high-frequency and precise ultrasonic sounder was used to monitor precipitated/deposited and drift snow events over a 3-year period(17 January 2005 to 4 January 2008) at the Eagle automatic weather station site,inland Antarctica.Ion species and oxygen isotope ratios were also generated from a snow pit below the sensor.These accumulation and snowdrift events were used to examine the synchronism with seasonal variations of δ~(18)O and ion species,providing an opportunity to assess the snowdrift effect in typical Antarctic inland conditions.There were up to 1-year differences for this 3-year-long snow pit between the traditional dating method and ultrasonic records.This difference implies that in areas with low accumulation or high wind,the snowdrift effect can induce abnormal disturbances on snow deposition.The snowdrift effect should be seriously taken into account for high-resolution dating of ice cores and estimation of surface mass balance,especially when the morphology of most Antarctic inland areas is similar to that of the Eagle site. 相似文献