首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   3篇
大气科学   2篇
地球物理   10篇
地质学   14篇
海洋学   15篇
天文学   4篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2006年   1篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1994年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1983年   3篇
排序方式: 共有45条查询结果,搜索用时 0 毫秒
41.
The open pit mining nearby shoreline is planned to be extended into below sea level in order to use additional reserves of the cement raw material (marl). The raw material is currently contaminated by seawater intrusion below a depth of 20 m up to the distance of 90 m from shoreline. Seawater intrusion related contamination of the material used for the cement production was investigated by means of diffusion process for the future two below sea level mining scenarios covering 43 years of period. According to the results, chloride concentrations higher than the tolerable limit of a cement raw material would be present in the material about 10–25 cm inward from each discontinuity surface, controlling groundwater flow, located between 170 and 300 m landward from the shoreline at below sea level mining depths of 0–30 m. The estimations suggest that total amounts of dilution required for the contaminated raw material to reduce its concentration level to the tolerance limit with uncontaminated raw material are about 113- to 124-fold for scenario I (13 years of below sea level mining after 30 years of above sea level mining) and about 126- to 138-fold for scenario II (43 years of simultaneous above and below sea level minings).  相似文献   
42.
The study was carried out in order to investigate existing hydrogeochemical relationships between groundwater environment and geological units in the Kazan trona deposit area, Ankara, Turkey. Evaluations indicate that concentrations of alkalinity, boron, chloride and sodium in the upgradient groundwater of the Eocene sedimentary units gradually increase toward downgradient by the interactions of saline minerals (searlesite, shortite, northupite and pyrite) present in the secondary structures (microfractures and irregular voids) at various levels. Inverse modeling calculations suggest that the range of dissolved mass amounts in millimoles per kilogram of water for searlesite, shortite and northupite minerals are 0.05–28.67, 2.62–24.39 and 0.01–24.19, respectively, in the aquifer between the upgradient and downgradient locations. The ranges of accompanying calcite and dolomite precipitations are 4.54–48.71 and 2.16–24.08 mmol per kg of water, respectively. Chemical composition of the groundwater in the overlying Neogene sedimentary unit includes also higher concentrations of the major ions as measured in groundwater of the underlying units. However the lack of saline mineral zones in the Neogene unit indicates that upward groundwater mixing takes place from the underlying aquifer as also suggested by the measured upward gradient. The mixing percentage of the underlying groundwater as determined from the nested wells ranges from 2.7 to 48.3%, from upgradient to downgradient, respectively. The unconfined alluvium aquifer overlying the Neogene unit includes relatively dilute groundwater except in two locations, where high-ion concentrations detected in groundwater of the underlying units are also high in these locations, suggesting upward groundwater mixing from the underlying aquifer due to upward gradient. However, groundwater input investigations from the alluvium aquifer to the nearby Ova stream indicate that the detected high concentrations in these locations are diluted or sorbed by the aquifer material toward downgradient (Ova Stream).  相似文献   
43.
An artificial water canal opening is planned between the Agean Sea and the historical Ephesus site for the sake of tourism in the Selçuk sub-basin. In order to predict the effects of the planned canal on freshwater–seawater interface and related contamination in the aquifer, 3-D numerical density dependent flow and solute transport simulations were carried out. The simulations included the pre-pumping and pumping periods without a canal and the prediction period in the presence of the canal. Chloride concentration comparisons of the results obtained from the pre-pumping period and the pumping period indicate that the freshwater-seawater interface in the aquifer has progressed inland due to artificial discharge in the sub-basin. Drawdown during the pumping period is about 15 cm. The planned canal opening could further lower the groundwater levels in the area and would change the groundwater flow directions in the first 4 years. Then the levels and flow directions will nearly recover. However, the canal opening could cause further seawater intrusion into the aquifer to the extent that groundwater would be unfit to use for irrigation after the seventh year of the canal opening in the irrigation cooperative II wells area and would be unfit to use for drinking purposes after the tenth year in the municipality wells area located at the south of the cooperative II wells. On the other hand, the cooperative I wells would not be effected by the opening of the canal.  相似文献   
44.
Three aquifer systems as deep, middle, and shallow were identified in the Kazan trona ore deposit area. The flow conditions and the interaction between various layers were conceptualized into a site hydrogeological model. Each aquifer system was hydraulically and chemically characterized and represented in a numerical groundwater model. The resulting model has been calibrated under steady-state and transient conditions using available data. The flow model was used in conjunction with a three-dimensional solute transport model to assess the impacts of the pilot well solution mining of the trona deposit on groundwater resources during operation and post-operation periods. The results of operation period indicate that, even under the worse conditions (50 times increase in vertical hydraulic conductivity due to subsidence), ion contribution from the mine area with 118,000 mg/l maximum concentration would be about 58 mg/l into the deep aquifer system. This contribution is about 1.45% of the existing concentration (4,000 mg/l) in the deep aquifer. After 1,000 years of post-operation period, ion contribution from the mine area with maximum 119,000 mg/l concentration would be about 205 mg/l into the deep aquifer under extremely worse conditions. This contribution is about 5–20% of present concentrations in the deep aquifer. Retardation factors, which were not considered during model simulations would decrease the predicted concentrations. It is concluded that pilot well solution mining of the trona deposit would not have significant impact on the quality of groundwater resources in the overlying aquifers.  相似文献   
45.
On October 23, 2011, a magnitude of Mw 7.2 earthquake struck the Van province in eastern Turkey which caused approximately 600 life loss and 4,000 injured people. Although the recorded peak ground accelerations were relatively low (0.15–0.2 g) compared with that of other recent destructive Turkish earthquakes and the code-based design response spectrum, a large number of reinforced concrete buildings with 4–6 stories and non-engineered masonry buildings were either heavily damaged or collapsed in the region. Based on the post-earthquake technical inspections, the goal of this paper is to introduce major reasons for structural damages in the disaster area and to discuss these failures along with the approaches given in the design code which is renewed after August 17, 1999 Marmara Earthquake. Some remarkable lessons learned from earthquake-induced failures and damages specific to building construction techniques are presented in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号