首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   0篇
测绘学   3篇
大气科学   7篇
地球物理   69篇
地质学   23篇
天文学   185篇
综合类   1篇
自然地理   1篇
  2020年   3篇
  2017年   4篇
  2016年   7篇
  2014年   4篇
  2013年   3篇
  2012年   7篇
  2011年   4篇
  2010年   4篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   7篇
  1988年   8篇
  1987年   9篇
  1986年   6篇
  1985年   11篇
  1984年   7篇
  1983年   8篇
  1982年   10篇
  1981年   11篇
  1980年   10篇
  1979年   3篇
  1978年   7篇
  1977年   5篇
  1976年   7篇
  1975年   7篇
  1974年   4篇
  1973年   3篇
  1972年   8篇
  1971年   12篇
  1970年   10篇
  1969年   8篇
  1968年   15篇
  1967年   2篇
  1966年   2篇
  1963年   2篇
  1960年   2篇
  1958年   2篇
排序方式: 共有289条查询结果,搜索用时 18 毫秒
111.
Flaring arches     
We show detailed observations in X-rays, UV lines, and H of an extended arch, about 300000 km long, which developed as a consequence of a compact subflare. This subflare occurred in an included magnetic polarity of relatively low magnetic field strength (compared to that of the sunspots). The apparition of this big arch was preceded by that of a smaller arch, about 30000 km long, which masked the polarity inversion line filament in the early phase of the subflare. The big arch which developed later, around the time of the main X-ray and UV spike of the subflare, connected the included polarity and the main leading sunspot of the region, and became fully developed in a few minutes. The fact that both arches were simultaneously observed in all spectral domains as well as their fine structure in H can only be explained by considering the arch as composed of several unresolved portions of material having widely different temperatures. The H observations can be interpreted as showing the appearance of this cool material as a result of condensation, but a more appealing interpretation is that there was almost simultaneous ejection of superhot (107 K), hot (106 K), mild (105 K), and cool (104 K) material from the subflare site along previously existing magnetic tubes of much lower density. The termination of the subflare was marked by a rather hard X-ray and UV spike which appeared to originate in a different structure than that of the main spike. The material in the arch gradually cooled and drained down after the end of the subflare.Member of Carrera del Investigador, CONICET, Argentina.  相似文献   
112.
We draw attention of flare build-up observers to a strong 30 hour-long outburst of homologous flare activity and unusual growth and brightening of coronal loops, seen on Skylab. We suggest that these events might have been closely associated with newly emerging magnetic flux, in spite of the fact that the flux effects in H and EUV were first seen only late after the activity had started, and the flux emerged at the opposite end of the coronal loops from where the flares occurred.  相似文献   
113.
The aim of the present paper will be to generalize the methods for computation of the elements of eclipsing binary systems in the frequency-domain, summarized in our recent Paper I (Kopal, 1981), to the case ofclose systems, in which photometric proximity effects become conspicuous and must be taken into account before the methods previously outlined in Paper I become directly applicable.Following a brief introduction to the subject given in Section 1, Section 2 summarizes (and comments upon) the difficulties previously encountered in separation of the photometric proximity and eclipse effects. In Section 3 we develop an alternative new approach to the problem by modulation of the light curves throughout the entire orbital cycle, intended to filter out proximity effects from the observed light changes and isolate those due to eclipses; while in Section 4 we shall present a numerical application of the new method to an analysis of the observed light changes of the eclipsing system W Ursae Maioris.In Section 5 we shall present a quantitative investigation of the photometric effects of distortion on the light changes of close eclipsing systems within eclipses-the most complicated part of the whole problem-with numerical application to the system of U Sagittae carried out in the concluding Section 6.Appendices 1–3 contain numerical data which should facilitate application of the methods developed and illustrated in Sections 3–4; while Appendix 4 will be reserved for a mathematical proof of certain expansions used in Section 5, which would have been too discursive for the main text.  相似文献   
114.
X-ray bright surges   总被引:1,自引:0,他引:1  
We present evidence of X-ray emission from surges that are bright in H. These surges have many features common to flaring arches of Martin and vestka (1988); the basic difference between the two is that in flaring arches cold and hot plasma are injected into clearly defined closed magnetic loops, while in the surges the injection goes into large-scale magnetic field structures of which the second footpoint is usually unknown. Because of the steep density gradient in such large-scale structures, the X-ray visibility of bright surges is limited to a few tens of seconds only. A series of repetitive surges, some of them bright and emitting X-rays, occurred on 8 July, 1980 from footpoints of two large-scale coronal structures, which might have been the legs of an enormous arch at least 600 Mm long.  相似文献   
115.
116.
117.
Flaring arches     
We discuss first the development of the coronal arch-shaped structure of 57000 km length which was born at or before 08:00 UT on 6 November, 1980 and became the site of 13 quasi-periodic brightenings in hard X-rays from 10:00 to 14:30 UT. The same structure became the site of a series of 17 flaring arches between 15:30 and 24:00 UT on that day. The periodicity of 19 min, defined well for the quasi-periodic variations, seems to be partly retained during the occurrence of the flaring arches.The flaring arch studied in Paper I (called SB arch) was the brightest event of this set of events. This paper presents its extended analysis and also an analysis of three other flaring arches that occurred in this configuration. All these events exhibit similar characteristics and thus demonstrate that the flaring arch is a distinct solar phenomenon with specific characteristic properties.A comparison of H, Ov, and X-ray data for the SB arch essentially confirmed, in a quantitative way, the qualitative interpretation of the flow of emitting plasma through the arch proposed in Paper I. In particular, these data show: (1) a hot conduction front producing X-rays in the least dense plasma ahead, a decelerating more dense plasma bulk seen next in Ov, and still more decelerating very dense plasma eventually visible in emission in H; (2) a gradient of densities from the primary towards the secondary footpoint, by factor 3 in X-rays, one order of magnitude in Ov, and probably more in the densest loops emitting in H; (3) the secondary footpoint with hard X-ray spectrum, predominantly excited by particle streams.Member of the Carrera del Investigador, CONICET, Argentina.  相似文献   
118.
The aim of the present note is to point out that observations of eclipsing variables within minima do not, in general, allow a separation of the quadratic terms of limb-darkening from the first-order effects of the gravity-darkening of distorted components undergoing eclipse. Only a difference of the two can be deduced from the observations, but — especially in close binaries — the net effect will be dominated by gravity-darkening.  相似文献   
119.
The ellipsoidal Stokes boundary-value problem is used to compute the geoidal heights. The low degree part of the geoidal heights can be represented more accurately by Global Geopotential Models (GGM). So the disturbing potential is splitted into a low-degree reference potential and a higher-degree potential. To compute the low-degree part, the global geopotential model is used, and for the high-degree part, the solution of the ellipsoidal Stokes boundary-value problem in the form of the surface integral is used. We present an effective method to remove the singularity of the high-degree of the spherical and ellipsoidal Stokes functions around the computational point. Finally, the numerical results of solving the ellipsoidal Stokes boundary-value problem and the difference between the high-degree part of the solution of the ellipsoidal Stokes boundary-value problem and that of the spherical Stokes boundary-value problem is presented.  相似文献   
120.
On May 21/22, 1980 the Hard X-Ray Imaging Spectrometer aboard the SMM imaged an extensive coronal structure after the occurrence of a two-ribbon flare on May 21, 20:50 UT. The structure was observed from 22:20 UT on May 21 until its disappearence at 09:00 UT on May 22.At 22:20 UT the brightest pixel in the arch was located at a projected altitude of 95 000 km above the zero line of the longitudinal magnetic field. At 23:02 UT the maximum of brightness shifted to a neighbouring pixel with approximately the same projected altitude. This sudden shift indicates that the X-ray structure consisted of (at least) two separate arches at approximately the same altitude, one of which succeeded the other as the brightest arch in the structure at 23:02 UT.From 23:02 UT onwards the maximum of brightness did not change its position in the HXIS coarse field of view. With a spatial resolution of 32 this places an upper limit of 1.1 km s-1 on the rise velocity of the arch. Thus, contrary to a similar arch observed on November 6/7, where rise velocities of the order of 10 km s-1 were measured in the same phase of development, the May 22 arch was a stationary structure at an altitude of 145000 km.The following values were estimated for the physically relevant quantities of the May 21/22 arch at the time of its maximum brightness (23:00 UT): temperature T 6.3 × 106 K, electron density n e 1.1 × 109 cm-3, total emitting volume V 5 × 1029 cm3, energy density 2.9 erg cm–3, total energy contents E 1.4 × 1030 erg, total mass M 9 × 1014 g.The top of the arch was observed at 145 000 km altitude within 1.5 hr after the flare occurrence. Since it seems unlikely that the structure already existed prior to the flare at 20:50 UT, the arch must have risen to its stationary position with an average velocity exceeding 17 km s–1 (possibly much faster). We speculate that the arch was formed very fast at the flare onset, when (part of) the active region loop system was elevated within minutes to the observed altitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号