首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   3篇
  国内免费   3篇
测绘学   2篇
大气科学   3篇
地球物理   19篇
地质学   36篇
海洋学   1篇
天文学   3篇
综合类   2篇
自然地理   2篇
  2024年   1篇
  2022年   5篇
  2021年   7篇
  2020年   7篇
  2019年   1篇
  2018年   10篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  1987年   1篇
排序方式: 共有68条查询结果,搜索用时 0 毫秒
51.
In North Africa, the High Atlas belt culminates at more than 4000 m. In Morocco, recent work shows that a lithospheric thinning explains about 1000 m of the mean topography, the remaining topography being related to crustal shortening. We combine regional geology with new apatite fission‐track (AFT) ages to constrain the timing of these events in the Marrakech High Atlas (MHA). In the inner belt, 10 AFT ages are comprised between 9 ± 1 and 27 ± 3 Ma. These Neogene ages indicate that the MHA underwent significant denudation during that time. In the southern foreland domain of the belt, three samples give scattered AFT ages between 27 ± 2 and 87 ±5 Ma. Geological evidences allow us to constrain the age of a major denudation event during Middle Miocene age. We propose that it is linked to the thermal doming highlighted in the whole Moroccan Atlas domain.  相似文献   
52.
Calcium-poor dolomite from the sabkhas of Kuwait   总被引:1,自引:0,他引:1  
Small quantities of a rare Ca-deficient dolomite have been found coexisting in thin layers and alternating with the normal Ca-rich variety in the Holocene sabkhas of southern Kuwait. The Ca-poor dolomite has a molar composition of Ca46–49, whereas the Ca-rich type is Ca51–56. The former type has been found only in two localities of the supratidal zone that are not subjected to tidal flooding today, and mostly within the fluctuating ground-water table in these zones. The thin layers are either carbonate mud-rich or pellet-rich, and the amount of Ca-poor dolomite is never more than 4 to 6 per cent by weight of the total carbonate fraction. The dolomites vary in size between 2 μm and 5 μm and exhibit characteristic rhombic crystal morphologies.  相似文献   
53.
Natural Resources Research - In this study, a new 3-stage approach that consists of clustering, simulation, and optimization stages is proposed for the simulation of groundwater level (GWL) in an...  相似文献   
54.
Abstract

Knowledge of the relationship between rainfall intensity and kinetic energy and its variations in time and space is important for the prediction of erosion hazard. Kinetic energy and erosivity are also strongly controlled by raindrop size. However, studies on raindrop measurement and different practical techniques have been rarely documented. The current study therefore aimed to apply existing raindrop-size measurement techniques—the photographic, flour-pellet and stain methods, as well as an innovative flour-stain method—and to evaluate their applicability at several intensities in Mazandaran Province, Iran. The distribution of raindrop size obtained by the different methods was recorded and compared with those obtained through applying a high-speed imaging technique. All the analyses were made with the help of a SPSS software package. The results showed that the raindrop diameters ranged from 0.2 to 5.16 mm at different rainfall intensities. Statistical comparison of the methods using the Duncan test showed that the flour-pellet method presented similar results to the photographic technique; it was concluded that this can be used as a practical and inexpensive method to estimate a wide range of raindrop sizes.

Editor Z.W. Kundzewicz

Citation Sadeghi, S.H., Abdollahi, Z., and Khaledi Darvishan, A., 2013. Experimental comparison of some techniques for estimating natural raindrop size distribution on the south coast of the Caspian Sea, Iran. Hydrological Sciences Journal, 58 (6), 1374–1382.  相似文献   
55.
Data inadequacy is a common problem in designing or updating groundwater monitoring systems. The developed methodologies for the optimal design of groundwater monitoring systems usually assume that there is a complete set of data obtained from existing monitoring wells and provide a revised configuration for the system by analyzing the current data. These methodologies are not usually applicable when the current groundwater quantity and quality data are highly sparse. In this paper, a new simulation–optimization approach based on Bayesian maximum entropy theory (BME) is proposed for revising spatial and temporal monitoring frequencies in a sparsely monitored aquifer. The BME is used to simulate the spatial and spatiotemporal variations of groundwater indicators, incorporating the space/time uncertainties due to insufficient data. Comparing the obtained estimations with observations, the best BME model was selected to be linked with an optimization model. The main goal of optimization was to find out the spatial and temporal sampling characteristics of the monitoring stations using the concepts of Entropy theory and a groundwater vulnerability index. The results show the BME estimations are less biased and more accurate than Ordinary Kriging in both spatial and spatiotemporal analysis. The improvements in the BME estimates are mostly related to incorporating hard (accurate) and soft (uncertain) data in the estimation process. The applicability and efficiency of the proposed methodology have been evaluated by applying it to the Tehran aquifer in Iran which is suffering from high groundwater table fluctuations and nitrate pollution. Based on the results, in addition to the existing monitoring wells, seven new monitoring stations have been proposed. Few stations which potentially can be removed or combined with other stations have been identified and a monthly sampling frequency has been suggested.  相似文献   
56.
In this paper, we used CORSIKA code to understand the characteristics of cosmic ray induced showers at extremely high energy as a function of energy, detector distance to shower axis, number, and density of secondary charged particles and the nature particle producing the shower. Based on the standard properties of the atmosphere, lateral and longitudinal development of the shower for photons and electrons has been investigated. Fluorescent light has been collected by the detector for protons, helium, oxygen, silicon, calcium and iron primary cosmic rays in different energies. So we have obtained a number of electrons per unit area, distance to the shower axis, shape function of particles density, percentage of fluorescent light, lateral distribution of energy dissipated in the atmosphere and visual field angle of detector as well as size of the shower image. We have also shown that location of highest percentage of fluorescence light is directly proportional to atomic number of elements. Also we have shown when the distance from shower axis increases and the shape function of particles density decreases severely. At the first stages of development, shower axis distance from detector is high and visual field angle is small; then with shower moving toward the Earth, angle increases. Overall, in higher energies, the fluorescent light method has more efficiency. The paper provides standard calibration lines for high energy showers which can be used to determine the nature of the particles.  相似文献   
57.
ABSTRACT

Streamflow prediction is useful for robust water resources engineering and management. This paper introduces a new methodology to generate more effective features for streamflow prediction based on the concept of “interaction effect”. The new features (input variables) are derived from the original features in a process called feature generation. It is necessary to select the most efficient input variables for the modelling process. Two feature selection methods, least absolute shrinkage and selection operator (LASSO) and particle swarm optimization-artificial neural networks (PSO-ANN), are used to select the effective features. Principal components analysis (PCA) is used to reduce the dimensions of selected features. Then, optimized support vector regression (SVR) is used for monthly streamflow prediction at the Karaj River in Iran. The proposed method provided accurate prediction results with a root mean square error (RMSE) of 2.79 m3/s and determination coefficient (R2 ) of 0.92.  相似文献   
58.
In this paper, we analyse the uncertainty and parameter sensitivity of a conceptual water quality model, based on a travel time distribution (TTD) approach, simulating electrical conductivity (EC) in the Duck River, Northwest Tasmania, Australia for a 2-year period. Dynamic TTDs of stream water were estimated using the StorAge Selection (SAS) approach, which was coupled with two alternate methods to model stream water EC: (1) a solute-balance approach and (2) a water age-based approach. Uncertainty analysis using the Differential Evaluation Adoptive Metropolis (DREAM) algorithm showed that: 1. parameter uncertainty was a small contribution to the overall uncertainty; 2. most uncertainty was related to input data uncertainty and model structure; 3. slightly lower total error was obtained in the water age-based model than the solute-balance model; 4. using time-variant SAS functions reduced the model uncertainty markedly, which likely reflects the effect of dynamic hydrological conditions over the year affecting the relative importance of different flow pathways over time. Model parameter sensitivity analysis using the Variogram Analysis of Response Surfaces (VARS-TOOL) framework found that parameters directly related to the EC concentration were most sensitive. In the solute-balance model, the rainfall concentration Crain and in the age-based model, the parameter controlling the rate of change of EC with age (λ) were the most sensitive parameter. Model parameters controlling the age mixes of both evapotranspiration and streamflow water fluxes (i.e., the SAS function parameters) were influential for the solute-balance model. Little change in parameter sensitivity over time was found for the age-based concentration relationship; however, the parameter sensitivity was quite dynamic over time for the solute-balance approach. The overarching outcomes provide water quality modellers, engineers and managers greater insight into catchment functioning and its dependence on hydrological conditions.  相似文献   
59.
60.
Construction of managed aquifer recharge structures(MARS)to store floodwater is a common strategy for storing depleted groundwater resources in arid and semi-arid regions,as part of integrated water resources management(IWRM).MARS divert surface water to groundwater,but this can affect downstream fluvial processes.The impact of MARS on fluvial processes was investigated in this study by combining remote sensing techniques with hydro-sediment modeling for the case of the Kaboutar-Ali-Chay aquifer,northwestern Iran.The impact of MARS on groundwater dynamics was assessed,sedimentation across the MARS was modeled using a 2D hydrodynamic model,and morphological changes were quantified in the human-impacted alluvial fan using Landsat time series data and statistical methods.Changes were detected by comparing data for the periods before(1985e1996)and after(1997 e2018)MARS construction.The results showed that the rate of groundwater depletion decreased from 2.14 m/yr before to 0.86 m/yr after MARS construction.Hydro-sediment modeling revealed that MARS ponds slowed water outflow,resulting in a severe decrease in sediment load which lead to a change from sediment deposition to sediment erosion in the alluvial fan.Morphometric analyses revealed decreasing alluvial fan area and indicated significant differences(p<0.01)between pre-and post-impact periods for different morphometric parameters analyzed.The rate of change in area of the Kaboutar-Ali-Chay alluvial fan changed from0.228 to0.115 km2/year between pre-and post-impact periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号