首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   23篇
测绘学   4篇
大气科学   9篇
地球物理   75篇
地质学   151篇
海洋学   15篇
天文学   58篇
自然地理   20篇
  2023年   2篇
  2021年   4篇
  2020年   8篇
  2019年   6篇
  2018年   2篇
  2017年   12篇
  2016年   15篇
  2015年   12篇
  2014年   8篇
  2013年   9篇
  2012年   4篇
  2011年   9篇
  2010年   6篇
  2009年   13篇
  2008年   7篇
  2007年   9篇
  2006年   26篇
  2005年   17篇
  2004年   12篇
  2003年   8篇
  2002年   11篇
  2001年   4篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   4篇
  1992年   7篇
  1991年   8篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1986年   6篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1972年   2篇
  1968年   1篇
  1965年   1篇
排序方式: 共有332条查询结果,搜索用时 343 毫秒
51.
The Priest pluton contact aureole in the Manzano Mountains, central New Mexico preserves evidence for upper amphibolite contact metamorphism and localized retrograde hydrothermal alteration associated with intrusion of the 1.42 Ga Priest pluton. Quartz–garnet and quartz–sillimanite oxygen isotope fractionations in pelitic schist document an increase in the temperatures of metamorphism from 540 °C, at a distance of 1 km from the pluton, to 690 °C at the contact with the pluton. Comparison of calculated temperature estimates with one‐dimensional thermal modelling suggests that background temperatures between 300 and 350 °C existed at the time of intrusion of the Priest pluton. Fibrolite is found within 300 m of the Priest pluton in pelitic and aluminous schist metamorphosed at temperatures >580 °C. Coexisting fibrolite and garnet in pelitic schist are in oxygen isotope equilibrium, suggesting these minerals were stable reaction products during peak metamorphism. The fibrolite‐in isograd is coincident with the staurolite‐out isograd in pelitic schist, and K‐feldspar is not observed with the first occurrence of fibrolite. This suggests that the breakdown of staurolite and not the second sillimanite reaction controls fibrolite growth in staurolite‐bearing pelitic schist. Muscovite‐rich aluminous schist locally preserves the Al2SiO5 polymorph triple‐point assemblage – kyanite, andalusite and fibrolite. Andalusite and fibrolite, but not kyanite, are in isotopic equilibrium in the aluminous schist. Co‐nucleation of fibrolite and andalusite at 580 °C in the presence of muscovite and absence of K‐feldspar suggests that univariant growth of andalusite and fibrolite occurred. Kyanite growth occurred during an earlier regional metamorphic event at a temperature nearly 80 °C lower than andalusite and fibrolite growth. Quartz–muscovite fractionations in hydrothermally altered pelitic schist and quartzite are small or negative, suggesting that late isotopic exchange between externally derived fluids and muscovite, but not quartz, occurred after peak contact metamorphism and that hydrothermal alteration in pelitic schist and quartzite occurred below the closure temperature of oxygen self diffusion in quartz (<500 °C).  相似文献   
52.
53.
This paper corrects an impression, created by a recent contribution to the International Journal for Numerical and Analytical Methods in Geomechanics, that the mathematical equivalence of the direct and indirect boundary element methods for the diffusion equation implies that their respective computational needs with regard to the body integral terms are equal. It is shown that in a stepwise implementation of the numerical procedure for solving a finite body problem, indirect methods requirean integration over an infinite region and not merely over the body as is the case for the direct version.  相似文献   
54.
55.
56.
57.
58.
The long-term stability of biogenic uraninite with respect to oxidative dissolution is pivotal to the success of in situ bioreduction strategies for the subsurface remediation of uranium legacies. Batch and flow-through dissolution experiments were conducted along with spectroscopic analyses to compare biogenic uraninite nanoparticles obtained from Shewanella oneidensis MR-1 and chemogenic UO2.00 with respect to their equilibrium solubility, dissolution mechanisms, and dissolution kinetics in water of varied oxygen and carbonate concentrations. Both materials exhibited a similar intrinsic solubility of ∼10−8 M under reducing conditions. The two materials had comparable dissolution rates under anoxic as well as oxidizing conditions, consistent with structural bulk homology of biogenic and stoichiometric uraninite. Carbonate reversibly promoted uraninite dissolution under both moderately oxidizing and reducing conditions, and the biogenic material yielded higher surface area-normalized dissolution rates than the chemogenic. This difference is in accordance with the higher proportion of U(V) detected on the biogenic uraninite surface by means of X-ray photoelectron spectroscopy. Reasonable sources of a stable U(V)-bearing intermediate phase are discussed. The observed increase of the dissolution rates can be explained by carbonate complexation of U(V) facilitating the detachment of U(V) from the uraninite surface. The fraction of surface-associated U(VI) increased with dissolved oxygen concentration. Simultaneously, X-ray absorption spectra showed conversion of the bulk from UO2.0 to UO2+x. In equilibrium with air, combined spectroscopic results support the formation of a near-surface layer of approximate composition UO2.25 (U4O9) coated by an outer layer of U(VI). This result is in accordance with flow-through dissolution experiments that indicate control of the dissolution rate of surface-oxidized uraninite by the solubility of metaschoepite under the tested conditions. Although U(V) has been observed in electrochemical studies on the dissolution of spent nuclear fuel, this is the first investigation that demonstrates the formation of a stable U(V) intermediate phase on the surface of submicron-sized uraninite particles suspended in aqueous solutions.  相似文献   
59.
Evaporation from wet-canopy (\(E_\mathrm{C}\)) and stem (\(E_\mathrm{S}\)) surfaces during rainfall represents a significant portion of municipal-to-global scale hydrologic cycles. For urban ecosystems, \(E_\mathrm{C}\) and \(E_\mathrm{S}\) dynamics play valuable roles in stormwater management. Despite this, canopy-interception loss studies typically ignore crown-scale variability in \(E_\mathrm{C}\) and assume (with few indirect data) that \(E_\mathrm{S}\) is generally \({<}2\%\) of total wet-canopy evaporation. We test these common assumptions for the first time with a spatially-distributed network of in-canopy meteorological monitoring and 45 surface temperature sensors in an urban Pinus elliottii tree row to estimate \(E_\mathrm{C}\) and \(E_\mathrm{S}\) under the assumption that crown surfaces behave as “wet bulbs”. From December 2015 through July 2016, 33 saturated crown periods (195 h of 5-min observations) were isolated from storms for determination of 5-min evaporation rates ranging from negligible to 0.67 \(\hbox {mm h}^{-1}\). Mean \(E_\mathrm{S}\) (0.10 \(\hbox {mm h}^{-1}\)) was significantly lower (\(p < 0.01\)) than mean \(E_\mathrm{C}\) (0.16 \(\hbox {mm h}^{-1}\)). But, \(E_\mathrm{S}\) values often equalled \(E_\mathrm{C}\) and, when scaled to trunk area using terrestrial lidar, accounted for 8–13% (inter-quartile range) of total wet-crown evaporation (\(E_\mathrm{S}+E_\mathrm{C}\) scaled to surface area). \(E_\mathrm{S}\) contributions to total wet-crown evaporation maximized at 33%, showing a general underestimate (by 2–17 times) of this quantity in the literature. Moreover, results suggest wet-crown evaporation from urban tree rows can be adequately estimated by simply assuming saturated tree surfaces behave as wet bulbs, avoiding problematic assumptions associated with other physically-based methods.  相似文献   
60.
Although fault growth is an important control on drainage development in modern rifts, such links are difficult to establish in ancient basins. To understand how the growth and interaction of normal fault segments controls stratigraphic patterns, we investigate the response of a coarse-grained delta system to evolution of a fault array in a Miocene half-graben basin, Suez rift. The early Miocene Alaqa delta complex comprises a vertically stacked set of footwall-sourced Gilbert deltas located in the immediate hangingwall of the rift border fault, adjacent to a major intrabasinal relay zone. Sedimentological and stratigraphic studies, in combination with structural analysis of the basin-bounding fault system, permit reconstruction of the architecture, dispersal patterns and evolution of proximal Gilbert delta systems in relation to the growth and interaction of normal fault segments. Structural geometries demonstrate that fault-related folds developed along the basin margin above upward and laterally propagating normal faults during the early stages of extension. Palaeocurrent data indicate that the delta complex formed a point-sourced depositional system developed at the intersection of two normal fault segments. Gilbert deltas prograded transverse into the basin and laterally parallel to faults. Development of the transverse delta complex is proposed to be a function of its location adjacent to an evolving zone of fault overlap, together with focusing of dispersal between adjacent fault segments growing towards each other. Growth strata onlap and converge onto the monoclinal fold limbs indicating that these structures formed evolving structural topography. During fold growth, Gilbert deltas prograded across the deforming fold surface, became progressively rotated and incorporated into fold limbs. Spatial variability of facies architecture is linked to along-strike variation in the style of fault/fold growth, and in particular variation in rates of crestal uplift and fold limb rotation. Our results clearly show that the growth and linkage of fault segments during fault array evolution has a fundamental control on patterns of sediment dispersal in rift basins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号