首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   23篇
测绘学   4篇
大气科学   9篇
地球物理   75篇
地质学   151篇
海洋学   15篇
天文学   58篇
自然地理   20篇
  2023年   2篇
  2021年   4篇
  2020年   8篇
  2019年   6篇
  2018年   2篇
  2017年   12篇
  2016年   15篇
  2015年   12篇
  2014年   8篇
  2013年   9篇
  2012年   4篇
  2011年   9篇
  2010年   6篇
  2009年   13篇
  2008年   7篇
  2007年   9篇
  2006年   26篇
  2005年   17篇
  2004年   12篇
  2003年   8篇
  2002年   11篇
  2001年   4篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   4篇
  1992年   7篇
  1991年   8篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1986年   6篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1972年   2篇
  1968年   1篇
  1965年   1篇
排序方式: 共有332条查询结果,搜索用时 737 毫秒
281.
In groundwater of the Trans-Pecos region of West Texas, unexpectedly high levels of nitrate (NO3 ?) are documented in four basins: Red Light Draw, Eagle Flats, Wild Horse and Michigan Flats, and Lobo and Ryan Flats. NO3 ? concentrations are changing over time in the majority (82.8 %) of wells and are increasing in most (69.8 %). The temporal change raises questions about the potential sources of NO3 ? and about flow dynamics in these basins. Presence of NO3 ? and temporal variability in concentration has implications beyond contamination risk because it indicates relatively rapid recharge (<60 years) to the basin groundwaters which was not expected based on previous estimates from chloride mass balance models and groundwater age-dating techniques. This research combines existing data ranging back to the 1940s with data collected in 2011 to document a multi-decadal trend of overall increasing NO3 ? concentration in deep basin groundwaters. Chlorofluorocarbon analyses of groundwater collected during 2011 indicate the presence of young (<70 years) water in the basins. The authors infer from these data that there are mechanism(s) by which relatively rapid and widespread recharge occurs on the basin floors; that recharge is spatially and temporally variable and that it results from both anthropogenic (irrigated agriculture) and natural (precipitation) sources. In light of these observations, fundamental conceptual models of flow in these basins should be re-evaluated.  相似文献   
282.
Studies of Cenozoic lavas and associated sediments in the Kiandra‐Cabramurra and Adaminaby‐Cooma areas identify and date tectonic deformations responsible for differential uplift and drainage development of the region. Volcanic activity on the northern Monaro was mainly Eocene‐Oligocene but in the extreme north there are Early Miocene sediments and lavas. Volcanic activity and folding began to rearrange the drainage in the Eocene‐Oligocene. The headwaters of the Murrumbidgee River originally flowed south into the Eucumbene River but Early Miocene folding and faulting uplifted the Monaro Range and created a large lake near Adaminaby. Lake overtopping rerouted the drainage east and then south along the basalt‐filled valley of an old north‐flowing tributary, the ‘Adaminaby River’, forming the present‐day Murrumbidgee River. The folding also produced a 300 m height difference between the Berridale and Adaminaby Plateaus and formed a section of the Great Divide. This fold displacement ranks with the largest Cenozoic fault displacements. In the Kiandra area tectonism associated with Early Miocene volcanism rearranged the drainage and tilted the Kiandra area and Kosciuszko Block to the north.  相似文献   
283.
284.
285.
286.
287.
We determined the chlorine isotope composition of 16 Martian meteorites using gas source mass spectrometry on bulk samples and in situ secondary ion microprobe analysis on apatite grains. Measured δ37Cl values range from ?3.8 to +8.6‰. The olivine‐phyric shergottites are the isotopically lightest samples, with δ37Cl mostly ranging from ?4 to ?2‰. Samples with evidence for a crustal component have positive δ37Cl values, with an extreme value of 8.6‰. Most of the basaltic shergottites have intermediate δ37Cl values of ?1 to 0‰, except for Shergotty, which is similar to the olivine‐phyric shergottites. We interpret these data as due to mixing of a two‐component system. The first component is the mantle value of ?4 to ?3‰. This most likely represents the original bulk Martian Cl isotope value. The other endmember is a 37Cl‐enriched crustal component. We speculate that preferential loss of 35Cl to space has resulted in a high δ37Cl value for the Martian surface, similar to what is seen in other volatile systems. The basaltic shergottites are a mixture of the other two endmembers. The low δ37Cl value of primitive Mars is different from Earth and most chondrites, both of which are close to 0‰. We are not aware of any parent‐body process that could lower the δ37Cl value of the Martian mantle to ?4 to ?3‰. Instead, we propose that this low δ37Cl value represents the primordial bulk composition of Mars inherited during accretion. The higher δ37Cl values seen in many chondrites are explained by later incorporation of 37Cl‐enriched HCl‐hydrate.  相似文献   
288.
Northwest Africa 757 is unique in the LL chondrite group because of its abundant shock‐induced melt and high‐pressure minerals. Olivine fragments entrained in the melt transform partially and completely into ringwoodite. Plagioclase and Ca‐phosphate transform to maskelynite, lingunite, and tuite. Two distinct shock‐melt crystallization assemblages were studied by FIB‐TEM analysis. The first melt assemblage, which includes majoritic garnet, ringwoodite plus magnetite‐magnesiowüstite, crystallized at pressures of 20–25 GPa. The other melt assemblage, which consists of clinopyroxene and wadsleyite, solidified at ~15 GPa, suggesting a second veining event under lower pressure conditions. These shock features are similar to those in S6 L chondrites and indicate that NWA 757 experienced an intense impact event, comparable to the impact event that disrupted the L chondrite parent body at 470 Ma.  相似文献   
289.
290.
Most semi‐distributed watershed water quality models divide the watershed into hydrologic response units (HRU) with no flow among them. This is problematic when watersheds are delineated to include variable source areas (VSAs) because it is the lateral flows from upslope areas to downslope areas that generate VSAs. Although hydrologic modellers have often successfully calibrated these types of models, there can still be considerable uncertainty in model results. In this paper, a topographic‐index‐based method is described and tested to distribute effective soil water holding capacity among HRUs, which can be subsequently adjusted using the watershed baseflow coefficient. The method is tested using a version of the Soil and Water Assessment Tool (SWAT) model that simulates VSA runoff and is applied to two watersheds: a New York State (NYS) watershed, and one in the head waters of the Blue Nile Basin (BNB) in Ethiopia. Daily streamflow predicted using effective soil water storage capacities based only on the topographic index were reassuringly accurate in both the NYS watershed (daily Nash Sutcliffe (E) = 0·73) and in the BNB (E = 0·70). Using the baseflow coefficient to adjust the effective soil water storage capacity only slightly improved streamflow predictions in NYS (E = 0·75) but substantially improved the BNB predictions (E = 0·80). By comparison, the standard SWAT model, which uses the traditional look‐up tables to determine a runoff curve number, performed considerably less accurately in un‐calibrated form (E = 0·51 for NYS and E = 0·45 for BNB), but improved substantially when explicitly calibrated to streamflow measurements (E = 0·76 for NYS and E = 0·67 for the BNB). The calibration method presented here provides a parsimonious, systematic approach to using established models in VSA watersheds that reduces the ambiguity inherent in model calibration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号