首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   524931篇
  免费   60231篇
  国内免费   79141篇
测绘学   47297篇
大气科学   62264篇
地球物理   111507篇
地质学   237635篇
海洋学   68212篇
天文学   56246篇
综合类   24840篇
自然地理   56302篇
  2024年   1760篇
  2023年   5040篇
  2022年   14779篇
  2021年   19162篇
  2020年   16501篇
  2019年   19231篇
  2018年   22317篇
  2017年   21194篇
  2016年   23215篇
  2015年   20132篇
  2014年   25098篇
  2013年   33369篇
  2012年   30305篇
  2011年   33574篇
  2010年   32446篇
  2009年   34115篇
  2008年   32998篇
  2007年   31669篇
  2006年   29677篇
  2005年   24272篇
  2004年   19535篇
  2003年   16009篇
  2002年   15198篇
  2001年   13874篇
  2000年   14202篇
  1999年   11141篇
  1998年   8621篇
  1997年   7690篇
  1996年   7567篇
  1995年   7055篇
  1994年   6303篇
  1993年   4452篇
  1992年   4088篇
  1991年   3600篇
  1990年   3505篇
  1989年   3101篇
  1988年   2849篇
  1987年   3160篇
  1986年   2962篇
  1985年   3353篇
  1984年   3638篇
  1983年   3255篇
  1982年   2962篇
  1981年   2720篇
  1980年   2464篇
  1979年   2337篇
  1978年   2208篇
  1977年   1969篇
  1976年   1853篇
  1973年   1772篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
971.
972.
ABSTRACT Lead isotope variability of magmatic arc rocks and associated mineralization of the Central Andes is usually considered to be the result of mixing between a homogeneous mantle and heterogeneous continental crust. About 230 new lead isotope data on the Northern and Central Andes allow us to compare for the first time lead isotope systematics of the Late Cretaceous – Tertiary arc magmatism and associated mineralization along the Andean chain between 8°N and 40°S. Lead isotope compositions indicate mixing between mantle and upper crustal rocks along the whole Andean chain. Additionally, we have found that mantle end-members of the Late Cretaceous – Tertiary magmatism are heterogeneous and systematically shifted towards less radiogenic 206Pb/204Pb compositions from north to south along the Andes. This heterogeneity most likely results from mixing between a low radiogenic mantle, possibly carrying a DMM or EM I component, and a more radiogenic mantle, possibly carrying an HIMU component. Thus, our results imply that lead isotope variability of Andean magmas at the continental scale is caused not only by crustal but also by mantle heterogeneity.  相似文献   
973.
We present a model-atmosphere analysis for the bright ( V ∼13) star ZNG-1, in the globular cluster M10. From high-resolution ( R ∼40 000) optical spectra we confirm ZNG-1 to be a post-asymptotic giant branch (post-AGB) star. The derived atmospheric parameters are T eff=26 500±1000 K and log  g =3.6±0.2 dex . A differential abundance analysis reveals a chemical composition typical of hot post-AGB objects, with ZNG-1 being generally metal poor, although helium is approximately solar. The most interesting feature is the large carbon underabundance of more than 1.3 dex. This carbon deficiency, along with an observed nitrogen enhancement relative to other elements, may suggest that ZNG-1 evolved off the AGB before the third dredge-up occurred. Also, iron depletions observed in other similar stars suggest that gas–dust fractionation in the AGB progenitor could be responsible for the observed composition of these objects. However, we need not invoke either scenario since the chemical composition of ZNG-1 is in good agreement with abundances found for a Population II star of the same metallicity.  相似文献   
974.
We report on the discovery of 25 variable stars plus 13 suspected variables found in the field of the open cluster NGC 6819. The stars were identified from time-series photometric data obtained on the Isaac Newton Telescope, La Palma, during two observing runs covering the 19 nights between 1999 June  22–30  and 1999 July  22–31  . The variables found include 12 eclipsing binaries with an additional three suspected, nine BY Draconis systems, plus four variables of other types, including one star believed to be a Cepheid. Three of the 15 eclipsing binaries are believed to be cluster members. Details of a further 10 suspected variable stars are also included.  相似文献   
975.
We propose a scheme to classify planetary nebulae (PNe) according to their departure from axisymmetric structure. We consider only departure along and near the equatorial plane, i.e. between the two sides perpendicular to the symmetry axis of the nebula. We consider six types of departure from axisymmetry: (1) PNe where the central star is not at the centre of the nebula; (2) PNe having one side brighter than the other; (3) PNe having unequal size or shape of the two sides; (4) PNe where the symmetry axis is bent, e.g. the two lobes in a bipolar PN are bent toward the same side; (5) PNe where the main departure from axisymmetry is in the outer regions, e.g. an outer arc; and (6) PNe that show no departure from axisymmetry, i.e. any departure, if it exists, is on scales smaller than the scale of blobs, filaments and other irregularities in the nebula. PNe that possess more than one type of departure are classified by the most prominent type. We discuss the connection between departure types and the physical mechanisms that may cause them, mainly resulting from the influence of a stellar binary companion. We find that ∼50 per cent of all PNe in the analysed sample possess large-scale departure from axisymmetry. This number is larger than that expected from the influence of binary companions, namely ∼25–30 per cent. We argue that this discrepancy comes from many PNe where the departure from axisymmetry, mainly unequal size, shape or intensity, results from the presence of long-lived and large (hot or cool) spots on the surface of their asymptotic giant branch progenitors. Such spots locally enhance the mass-loss rate, leading to a departure from axisymmetry, mainly near the equator, in the descendent PN.  相似文献   
976.
Abstract— We measured the concentrations of 10Be, 26Al, 36Cl, 41Ca and 14C in the metal and/or stone fractions of 27 Antarctic chondrites from Frontier Mountain (FRO), including two large H‐chondrite showers. To estimate the pre‐atmospheric size of the two showers, we determined the contribution of neutron‐capture produced 36Cl (half‐life = 3.01 times 105 years) and 41Ca (1.04 times 105 years) in the stone fraction. The measured activities of neutron‐capture 36Cl and 41Ca, as well as spallation produced 10Be and 26Al, were compared with Monte Carlo‐based model calculations. The largest shower, FRO 90174, includes eight fragments with an average terrestrial age of (100 ± 30) × 103 years; the neutron‐capture saturation activities extend to 27 dpm/kg stone for 36Cl and 19 dpm/kg stone for 41Ca. The concentrations of spallation produced 10Be, 26Al and 36Cl constrain the radius (R) to 80–100 cm, while the neutron‐capture 41Ca activities indicate that the samples originated from the outer 25 cm. With a pre‐atmospheric radius of 80–100 cm, FRO 90174 is among the largest of the Antarctic stony meteorites. The large pre‐atmospheric size supports our hypothesis that at least 50 of the ~150 classified H5/H6‐chondrites from the Frontier Mountain stranding area belong to this single fall; this hypothesis does not entirely account for the high H/L ratio at Frontier Mountain. The smaller shower, FRO 90001, includes four fragments with an average terrestrial age of (40 ± 10) × 103 years; they contain small contributions of neutron‐capture 36Cl, but no excess of 41Ca. FRO 90001 experienced a complex exposure history with high shielding conditions in the first stage (150 < R < 300 cm) and much lower shielding in the second stage (R < 30 cm), the latter starting ~1.0 million years (Ma) ago. Based on the measured 10Be/21Ne and 26Al/21Ne ratios, the cosmic‐ray exposure ages of the two showers are 7.2 ± 0.5 Ma for FRO 90174 and 8 ± 1 Ma for FRO 90001. These ages coincide with the well‐established H‐chondrite peak and corroborate the observation that the exposure age distribution of FRO H‐chondrites is similar to that of non‐Antarctic falls. In addition, we found that corrections for neutron‐capture 36Ar (from decay of 36Cl) result in concordant 21Ne and 38Ar exposure ages.  相似文献   
977.
We calculate the expected mid-infrared (MIR) molecular hydrogen line emission from the first objects in the Universe. As a result of their low masses, the stellar feedback from massive stars is able to blow away their gas content and collect it into a cooling shell where H2 rapidly forms and IR roto-vibrational (as for example the rest-frame 2.12 μm) lines carry away a large fraction (up to 10 per cent) of the explosion energy. The fluxes from these sources are in the range 10−21–10−17 erg s−1 cm−2 . The highest number counts are expected in the 20-μm band, where about 105 sources deg−2 are predicted at the limiting flux of 3×10−18 erg s−1 cm−2. Among the planned observational facilities, we find that the best detection perspectives are offered by the Next Generation Space Telescope ( NGST ), which should be able to reveal about 200 first objects in one hour observation time at its limiting flux in the above band. Therefore, mid-IR instruments appear to represent perfect tools to trace star formation and stellar feedback in the high ( z ≳5) redshift Universe.  相似文献   
978.
979.
The recent detection of a transient absorption feature in the X-ray prompt emission of GRB 990705 showed the importance of such observations in the understanding of gamma-ray bursts and their progenitors. We investigate the time dependence of photoionization edges during the prompt emission of bursts in different environments. We show that their variability can be used to infer the density and geometry of the surrounding medium, giving important clues to unveil the nature of the burst progenitor.  相似文献   
980.
In this article we present a method for the automated prediction of stellar atmospheric parameters from spectral indices. This method uses a genetic algorithm (GA) for the selection of relevant spectral indices and prototypical stars and predicts their properties, using the k-nearest neighbors method (KNN). We have applied the method to predict the effective temperature, surface gravity, metallicity, luminosity class and spectral class of stars from spectral indices. Our experimental results show that the feature selection performed by the genetic algorithm reduces the running time of KNN up to 92%, and the predictive accuracy error up to 35%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号