首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54544篇
  免费   552篇
  国内免费   338篇
测绘学   1452篇
大气科学   4030篇
地球物理   9855篇
地质学   22645篇
海洋学   4126篇
天文学   10581篇
综合类   215篇
自然地理   2530篇
  2021年   294篇
  2020年   322篇
  2019年   336篇
  2018年   3696篇
  2017年   3470篇
  2016年   2459篇
  2015年   648篇
  2014年   978篇
  2013年   1745篇
  2012年   2067篇
  2011年   3978篇
  2010年   3613篇
  2009年   3991篇
  2008年   3235篇
  2007年   3851篇
  2006年   1348篇
  2005年   1410篇
  2004年   1295篇
  2003年   1289篇
  2002年   1089篇
  2001年   805篇
  2000年   799篇
  1999年   620篇
  1998年   586篇
  1997年   677篇
  1996年   532篇
  1995年   514篇
  1994年   499篇
  1993年   431篇
  1992年   417篇
  1991年   391篇
  1990年   399篇
  1989年   370篇
  1988年   379篇
  1987年   405篇
  1986年   370篇
  1985年   460篇
  1984年   454篇
  1983年   480篇
  1982年   452篇
  1981年   407篇
  1980年   449篇
  1979年   355篇
  1978年   316篇
  1977年   310篇
  1976年   288篇
  1975年   281篇
  1974年   286篇
  1973年   277篇
  1971年   188篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
361.
THERIA_G: a software program to numerically model prograde garnet growth   总被引:6,自引:4,他引:2  
We present the software program THERIA_G, which allows for numerical simulation of garnet growth in a given volume of rock along any pressure–temperature–time (PTt) path. THERIA_G assumes thermodynamic equilibrium between the garnet rim and the rock matrix during growth and accounts for component fractionation associated with garnet formation as well as for intracrystalline diffusion within garnet. In addition, THERIA_G keeps track of changes in the equilibrium phase relations, which occur during garnet growth along the specified PTt trajectory. This is accomplished by the combination of two major modules: a Gibbs free energy minimization routine is used to calculate equilibrium phase relations including the volume and composition of successive garnet growth increments as P and T and the effective bulk rock composition change. With the second module intragranular multi-component diffusion is modelled for spherical garnet geometry. THERIA_G allows to simulate the formation of an entire garnet population, the nucleation and growth history of which is specified via the garnet crystal size frequency distribution. Garnet growth simulations with THERIA_G produce compositional profiles for the garnet porphyroblasts of each size class of a population and full information on equilibrium phase assemblages for any point along the specified PTt trajectory. The results of garnet growth simulation can be used to infer the PTt path of metamorphism from the chemical zoning of garnet porphyroblasts. With a hypothetical example of garnet growth in a pelitic rock we demonstrate that it is essential for the interpretation of the chemical zoning of garnet to account for the combined effects of the thermodynamic conditions of garnet growth, the nucleation history and intracrystalline diffusion. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
F. GaidiesEmail:
  相似文献   
362.
The grain-scale processes of peridotite melting were examined at 1,340°C and 1.5 GPa using reaction couples formed by juxtaposing pre-synthesized clinopyroxenite against pre-synthesized orthopyroxenite or harzburgite in graphite and platinum-lined molybdenum capsules. Reaction between the clinopyroxene and orthopyroxene-rich aggregates produces a melt-enriched, orthopyroxene-free, olivine + clinopyroxene reactive boundary layer. Major and trace element abundance in clinopyroxene vary systematically across the reactive boundary layer with compositional trends similar to the published clinopyroxene core-to-rim compositional variations in the bulk lherzolite partial melting studies conducted at similar PT conditions. The growth of the reactive boundary layer takes place at the expense of the orthopyroxenite or harzburgite and is consistent with grain-scale processes that involve dissolution, precipitation, reprecipitation, and diffusive exchange between the interstitial melt and surrounding crystals. An important consequence of dissolution–reprecipitation during crystal-melt interaction is the dramatic decrease in diffusive reequilibration time between coexisting minerals and melt. This effect is especially important for high charged, slow diffusing cations during peridotite melting and melt-rock reaction. Apparent clinopyroxene-melt partition coefficients for REE, Sr, Y, Ti, and Zr, measured from reprecipitated clinopyroxene and coexisting melt in the reactive boundary layer, approach their equilibrium values reported in the literature. Disequilibrium melting models based on volume diffusion in solid limited mechanism are likely to significantly underestimate the rates at which major and trace elements in residual minerals reequilibrate with their surrounding melt. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
363.
Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian explosions (~102–103 kg s?1) to Plinian eruptions of moderate intensity (107–108 kg s?1). Recent well-documented historical eruptions from Etna, Kīlauea and Stromboli typify this diversity. Etna is Europe's largest and most voluminously productive volcano with an extraordinary level and diversity of Strombolian to subplinian activity since 1990. Kīlauea, the reference volcano for Hawaiian fountaining, has four recent eruptions with high fountaining (>400 m) activity in 1959, 1960, 1969 (–1974) and 1983–1986 (–2008); other summit (1971, 1974, 1982) and flank eruptions have been characterized by low fountaining activity. Stromboli is the type location for mildly explosive Strombolian eruptions, and from 1999 to 2008 these persisted at a rate of ca. 9 per hour, briefly interrupted in 2003 and 2007 by vigorous paroxysmal eruptions. Several properties of basaltic pyroclastic deposits described here, such as bed geometry, grain size, clast morphology and vesicularity, and crystal content are keys to understand the dynamics of the parent eruptions.The lack of clear correlations between eruption rate and style, as well as observed rapid fluctuations in eruptive behavior, point to the likelihood of eruption style being moderated by differences in the fluid dynamics of magma and gas ascent and the mechanism by which the erupting magma fragments. In all cases, the erupting magma consists of a mixture of melt and gaseous bubbles. The depth and rate of degassing, melt rheology, bubble rise and coalescence rates, and extent of syn-eruptive microlite growth define complex feedbacks that permit reversible shifts between fragmentation mechanisms and in eruption style and intensity. However, many basaltic explosive eruptions end after an irreversible shift to open-system outgassing and microlite crystallization in melt within the conduit.Clearer understanding of the factors promoting this diversity of basaltic pyroclastic eruptions is of fundamental importance in order to improve understanding of the range of behaviors of these volcanoes and assess hazards of future explosive events at basaltic volcanoes. The three volcanoes used for this review are the sites of large and growing volcano-tourism operations and there is a public need both for better knowledge of the volcanoes’ behavior and improved forecasting of the likely course of future eruptions.  相似文献   
364.
365.
146Sm–142Nd and 147Sm–143Nd systematics were investigated in garnet inclusions in diamonds from Finsch (S. Africa) and Hadean zircons from Jack Hills (W. Australia) to assess the potential of these systems as recorders of early Earth evolution. The study of Finsch inclusions was conducted on a composite sample of 50 peridotitic pyropes with a Nd model age of 3.3 Ga. Analysis of the Jack Hills zircons was performed on 790 grains with ion microprobe 207Pb/206Pb spot ages from 3.95 to 4.19 Ga. Finsch pyropes yield 100 × ?142Nd = ? 6 ± 12 ppm, ?143Nd = ? 32.5, and 147Sm/144Nd = 0.1150. These results do not confirm previous claims for a 30 ppm 142Nd excess in South African cratonic mantle. The lack of a 142Nd anomaly in these inclusions suggests that isotopic heterogeneities created by early mantle differentiation were remixed at a very fine scale prior to isolation of the South African lithosphere. Alternatively, this result may indicate that only a fraction of the mantle experienced depletion during the first 400 Myr of its history. Analysis of the Jack Hills zircon composite yielded 100 × ?142Nd = 8 ± 10 ppm, ?143Nd = 45 ± 1, and 147Sm/144Nd = 0.5891. Back-calculation of this present-day ?143Nd yields an unrealistic estimate for the initial ?143Nd of ? 160 ?-units, clearly indicating post-crystallization disturbance of the 147Sm–143Nd system. Examination of 146,147Sm–142,143Nd data reveals that the Nd budget of the Jack Hills sample is dominated by non-radiogenic Nd, possibly contained in recrystallized zircon rims or secondary subsurface minerals. This secondary material is characterized by highly discordant U–Pb ages. Although the mass fraction of altered zircon is unlikely to exceed 5–10% of total sample, its high LREE content precludes a reliable evaluation of 146Sm–142Nd systematics in Jack Hills zircons.  相似文献   
366.
Garnet-bearing schists from the Waterville Formation of south-central Maine provide an opportunity to examine the factors governing porphyroblast size over a range of metamorphic grade. Three-dimensional sizes and locations for all garnet porphyroblasts were determined for three samples along the metamorphic field gradient spanning lowest garnet through sillimanite grade, using high-resolution X-ray computed tomography. Comparison of crystal size distributions to previous data sets obtained by stereological methods for the same samples reveals significant differences in mode, mean, and shape of the distributions. Quantitative textural analysis shows that the garnets in each rock crystallized in a diffusion-controlled nucleation and growth regime. In contrast to the typical observation of a correlation between porphyroblast size and position along a metamorphic field gradient, porphyroblast size of the lowest-grade specimen is intermediate between the high- and middle-grade specimens’ sizes. Mean porphyroblast size does not correlate with peak temperatures from garnet-biotite Fe-Mg exchange thermometry, nor is post-crystallization annealing (Ostwald Ripening) required to produce the observed textures, as was previously proposed for these rocks. Robust pseudosection calculations fail to reproduce the observed garnet core compositions for two specimens, suggesting that these calc-pelites experienced metasomatism. For each of these two specimens, Monte Carlo calculations suggest potential pre-metasomatism bulk compositions that replicate garnet core compositions. Pseudosection analyses allow the estimation of the critical temperatures for garnet growth: ∼481, ∼477, and ∼485°C for the lowest-garnet-zone, middle-garnet-zone, and sillimanite-zone specimens, respectively. Porphyroblast size appears to be determined in this case by a combination of the heating rate during garnet crystallization, the critical temperature for the garnet-forming reaction and the kinetics of nucleation. Numerical simulations of thermally accelerated, diffusion-controlled nucleation, and growth for the three samples closely match measured crystal size distributions. These observations and simulations suggest that previous hypotheses linking the garnet size primarily to the temperature at the onset of porphyroblast nucleation can only partially explain the observed textures. Also important in determining porphyroblast size are the heating rate and the distribution of favorable nucleation sites.  相似文献   
367.
Migmatites produced by low-pressure anatexis of basic dykes are found in a contact metamorphic aureole around a pyroxenite–gabbro intrusion (PX2), on Fuerteventura. Dykes outside and inside the aureole record interaction with meteoric water, with low or negative δ18O whole-rock values (+0.2 to −3.4‰), decreasing towards the contact. Recrystallised plagioclase, diopside, biotite and oxides, from within the aureole, show a similar evolution with lowest δ18O values (−2.8, −4.2, −4.4 and −7.6‰, respectively) in the migmatite zone, close to the intrusion. Relict clinopyroxene phenocrysts preserved in all dykes, retain typically magmatic δ18O values up to the anatectic zone, where the values are lower and more heterogeneous. Low δ18O values, decreasing towards the intrusion, can be ascribed to the advection of meteoric water during magma emplacement, with increasing fluid/rock ratios (higher dyke intensities towards the intrusion acting as fluid-pathways) and higher temperatures promoting increasing exchange during recrystallisation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
368.
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from −2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo (αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ30Si value from roots to stem, including larger ratio of dissolved H4SiO4 to precipitated SiO2 in roots than in stem. There is a positive correlation between the δ30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor (αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO2 contents and δ30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.  相似文献   
369.
Atomistic simulations have been carried out to investigate the mechanisms of noble gas incorporation in minerals using both the traditional two-region approach and the “supercell” method. The traditional two-region approach has been used to calculate defect energies for Ne, Ar, Kr and Xe incorporation in MgO, CaO, diopside and forsterite in the static limit and at one atmosphere pressure. The possibilities of noble gas incorporation via both substitution and interstitial mechanisms are studied. The favored mechanism varies from mineral to mineral and from noble gas to noble gas. In all minerals studied, the variation of the solution energies of noble gas substitution with atomic radius appears approximately parabolic, analogous to those for 1+, 2+, 3+ and 4+ trace element incorporation on crystal lattice sites. Noble gas solution energies thus also fall on a curve, similar to those previously observed for cations with different charges, but with much lower curvature.The “supercell” method has been used to investigate the pressure dependence of noble gas incorporation in the same systems. Results indicate a large variation of the solubility of the larger noble gases, Kr and Xe with pressure. In addition, explicit simulation of incorporation at the (0 0 1) surface of MgO shows that the solubility of the heavier noble gases may be considerably enhanced by the presence of interfaces.  相似文献   
370.
The current study provides an investigation of abiotic reduction of an oversaturated uranyl solution driven by iron nanoparticle oxidation. The reactivity of nano-scale zero-valent iron (ZVI) under mildly oxic conditions (1.2% O2 and 0.0017% CO2) was studied in 1000 ppm uranyl solution in the pH range 3-7, at reaction times from 10 min to 4 h. Reductive precipitation of UO2 was observed as the main process responsible for the removal of uranium from solution with the kinetics of reaction becoming increasingly favourable at higher pH. Despite working with an oversaturated uranium solution, the precipitation of UO2 occurred in preference to precipitation of UO3·2H2O (metaschoepite) at reaction times between 1 and 4 h and for uranyl solutions initially set up at pH ?5. Characterisation of both solid and solution phases was performed using X-ray photoelectron spectroscopy (XPS), focused ion beam (FIB) imaging, X-ray diffraction (XRD) and inductively coupled plasma atomic emission spectroscopy (ICP-AES).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号