首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54544篇
  免费   552篇
  国内免费   338篇
测绘学   1452篇
大气科学   4030篇
地球物理   9855篇
地质学   22645篇
海洋学   4126篇
天文学   10581篇
综合类   215篇
自然地理   2530篇
  2021年   294篇
  2020年   322篇
  2019年   336篇
  2018年   3696篇
  2017年   3470篇
  2016年   2459篇
  2015年   648篇
  2014年   978篇
  2013年   1745篇
  2012年   2067篇
  2011年   3978篇
  2010年   3613篇
  2009年   3991篇
  2008年   3235篇
  2007年   3851篇
  2006年   1348篇
  2005年   1410篇
  2004年   1295篇
  2003年   1289篇
  2002年   1089篇
  2001年   805篇
  2000年   799篇
  1999年   620篇
  1998年   586篇
  1997年   677篇
  1996年   532篇
  1995年   514篇
  1994年   499篇
  1993年   431篇
  1992年   417篇
  1991年   391篇
  1990年   399篇
  1989年   370篇
  1988年   379篇
  1987年   405篇
  1986年   370篇
  1985年   460篇
  1984年   454篇
  1983年   480篇
  1982年   452篇
  1981年   407篇
  1980年   449篇
  1979年   355篇
  1978年   316篇
  1977年   310篇
  1976年   288篇
  1975年   281篇
  1974年   286篇
  1973年   277篇
  1971年   188篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
161.
162.
Differential equations describing the tidal evolution of the earth's rotation and of the lunar orbital motion are presented in a simple close form. The equations differ in form for orbits fixed to the terrestrial equator and for orbits with the nodes precessing along the ecliptic due to solar perturbations. Analytical considerations show that if the contemporary lunar orbit were equatorial the evolution would develop from an unstable geosynchronous orbit of the period about 4.42 h (in the past) to a stable geosynchronous orbit of the period about 44.8 days (in the future). It is also demonstrated that at the contemporary epoch the orbital plane of the fictitious equatorial moon would be unstable in the Liapunov's sense, being asymptotically stable at early stages of the evolution. Evolution of the currently near-ecliptical lunar orbit and of the terrestrial rotation is traced backward in time by numerical integration of the evolutional equations. It is confirmed that about 1.8 billion years ago a critical phase of the evolution took place when the equatorial inclination of the moon reached small values and the moon was in a near vicinity of the earth. Before the critical epoch t cr two types of the evolution are possible, which at present cannot be unambiguously distinguished with the help of the purely dynamical considerations. In the scenario that seems to be the most realistic from the physical point of view, the evolution also has started from a geosynchronous equatorial lunar orbit of the period 4.19 h. At t < t cr the lunar orbit has been fixed to the precessing terrestrial equator by strong perturbations from the earth's flattening and by tidal effects; at the critical epoch the solar perturbations begin to dominate and transfer the moon to its contemporary near-ecliptical orbit which evolves now to the stable geosynchronous state. Probably this scenario is in favour of the Darwin's hypothesis about originating the moon by its separation from the earth. Too much short time scale of the evolution in this model might be enlarged if the dissipative Q factor had somewhat larger values in the past than in the present epoch. Values of the length of day and the length of month, estimated from paleontological data, are confronted with the results of the developed model.  相似文献   
163.
Thaw modification is the general process whereby frost-fissure wedges are modified during thaw, and by which frost-fissure pseudomorphs may develop. Specific processes of thaw modification are inferred from ice-wedge pseudomorphs, composite-wedge pseudomorphs and deformed sand wedges in the Pleistocene Mackenzie Delta: i.e. thermal erosion, collapse, subsidence, refreezing, loading, buoyancy, spreading, folding and shearing. Thaw modification is believed to result in selective preservation of pseudomorphs and wedges. Sand wedges are more likely to be preserved than are ice-wedge pseudomorphs or compositewedge pseudomorphs, because only those sand wedges that penetrate massive ice or icy sediments are prone to thaw modification. Furthermore, whereas ice wedges preferentially develop in ice-rich, fine-grained sediments (thaw-sensitive), their pseudomorphs appear to be selectively preserved in ice-poor, coarse-grained sediments (thaw-stable).  相似文献   
164.
Z. Smith  M. Dryer 《Solar physics》1991,131(2):363-383
A parametric study of the evolution within, and signatures at, 1 AU of high-speed streams is performed with the use of a MHD, 21/2-D, time-dependent model. This study is an extension of an earlier one by Smith and Dryer (1990) who examined the ecliptic plane consequences of relatively short-duration, energetic solar disturbances. The present study examines both the erupting and corotating parts of long-duration, high-speed streams characteristic of coronal hole flows. By examining the variation of the simulated plasma velocity, density, temperature, and magnetic field at 1 AU, as well as the location of the solar coronal hole sources relative to the observer at 1 AU, we are able to provide some insight into the identification of the solar sources of interplanetary disturbances. We present and discuss two definitions for angle locating the solar source of interplanetary disturbances at 1 AU.We apply our results to the suggestion by Hewish (1988) that low-latitude coronal holes are suitably positioned to be the sources of major geomagnetic storms when the holes are in the eastern half of the solar hemisphere at the time of the commencement of the storm. Our results indicate that, for these cases, the streams emanating from within the hole must be very fast, greater than 1000 km s–1, or very wide, greater than 60°, at the inner boundary of 18 solar radii in our simulation.  相似文献   
165.
166.
It is known that the extremely hot environments of Wolf-Rayet stars and novae support dust formation, although in some selected cases only. The similarities in the luminosities of these objects suggest similar mechanisms of dust formation. The situation is reviewed in terms of the number of ionizing photons available for hydrogen, carbon and nitrogen other than helium. The larger abundance of nitrogen in the ejecta modifies these numbers significantly. Simple calculations for neutral carbon atoms via recombinations show that a critical condition is required to be met with for this purpose. This can be understood as due to the strong UV fields which leave the grains positively charged. Further, the type of dust appears to be decided by the ingredients constituting the ejecta.  相似文献   
167.
2D numerical modelling of impact cratering has been utilized to quantify an important depth-diameter relationship for different crater morphologies, simple and complex. It is generally accepted that the final crater shape is the result of a gravity-driven collapse of the transient crater, which is formed immediately after the impact. Numerical models allow a quantification of the formation of simple craters, which are bowl-shaped depressions with a lens of rock debris inside, and complex craters, which are characterized by a structural uplift. The computation of the cratering process starts with the first contact of the impactor and the planetary surface and ends with the morphology of the final crater. Using different rheological models for the sub-crater rocks, we quantify the influence on crater mechanics. To explain the formation of complex craters in accordance to the threshold diameter between simple and complex craters, we utilize the Acoustic Fluidization model. We carried out a series of simulations over a broad parameter range with the goal to fit the observed depth/diameter relationships as well as the observed threshold diameters on the Moon, Earth and Venus.  相似文献   
168.
We consider orbital resonances in multiplanet systems. These are expected to arise during or just after formation in a gaseous disc. Disc–planet interaction naturally produces orbital migration and circularization through the action of tidal torques which in turn may lead to an orbital resonance. The mass and angular momentum content of the disc is likely to be comparable to that in the planets so that it is essential to fully incorporate the disc in the analysis.We study the orbital evolution of two planets locked in 2:1 commensurability through migration tidally induced by the disc using both analytic methods and numerical hydrodynamic simulations. The planets are assumed to orbit in an inner cavity containing at most only a small amount of disc material. Results are found to be sensitive to initial surface density profile, planet masses and disc parameters. The evolution may range between attaining and subsequently maintaining a resonance lock with two angles librating to divergent migration with no commensurability formed. In the former case eccentricities increase monotonically with time while the system undergoes inward migration. If the migration is halted by loss of the disc leaving the planets in a final configuration, there is likely to be a low probability of seeing resonant planets at small radii as well as a sensitive dependence on past history.We have also considered a multiplanet system in secular apsidal resonance. We consider the system as being in just one secular normal mode and include the effects of a gaseous disc. It is suggested that a normal mode may be selected by adding in some weak dissipative process in the disc and that it may remain, involving only the planets, when the disc is slowly removed.  相似文献   
169.
170.
We outline some main results from recent analytical modelling of axisymmetric jets from the coronae of young stars and compare them to disk-wind and X-wind models. We emphazise the roles of the magnetic rotator and the disk in the formation and the evolution of the jet. We conjecture that with time both the efficiency of the magnetic rotator and the role of the disk as a primary source for the wind decline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号