首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4063篇
  免费   40篇
  国内免费   56篇
测绘学   99篇
大气科学   282篇
地球物理   783篇
地质学   1626篇
海洋学   243篇
天文学   926篇
综合类   7篇
自然地理   193篇
  2023年   18篇
  2022年   30篇
  2021年   32篇
  2020年   27篇
  2019年   41篇
  2018年   127篇
  2017年   128篇
  2016年   175篇
  2015年   80篇
  2014年   172篇
  2013年   219篇
  2012年   155篇
  2011年   184篇
  2010年   190篇
  2009年   221篇
  2008年   175篇
  2007年   170篇
  2006年   201篇
  2005年   131篇
  2004年   128篇
  2003年   108篇
  2002年   80篇
  2001年   74篇
  2000年   74篇
  1999年   79篇
  1998年   77篇
  1997年   87篇
  1996年   75篇
  1995年   46篇
  1994年   31篇
  1993年   58篇
  1992年   34篇
  1991年   42篇
  1990年   27篇
  1989年   34篇
  1988年   36篇
  1987年   42篇
  1986年   52篇
  1985年   41篇
  1984年   45篇
  1983年   43篇
  1982年   46篇
  1981年   34篇
  1980年   31篇
  1979年   35篇
  1977年   20篇
  1976年   21篇
  1975年   23篇
  1974年   20篇
  1973年   23篇
排序方式: 共有4159条查询结果,搜索用时 0 毫秒
31.
Based on X-ray, gamma-ray, and charged-particle measurements with several instruments onboard the Coronas-F satellite and on ACE and GOES experimental data presented on the Internet, we investigate the parameters of the solar flare of November 4, 2001, and the energetic-particle fluxes produced by it in circumterrestrial space. The increase in relativistic-electron fluxes for about 1.5 days points to a moving source (shock front). The structure of the energetic-particles fluxes in the second half of November 5, 2001, can be explained by the passage of the coronal mass ejection that was ejected on November 1, 2001, and that interacted with the shock wave from the flare of November 4, 2001.  相似文献   
32.
Using a theoretical model describing pulse shapes, we have clarified the relations between the observed pulses and their corresponding timescales, such as the angular spreading time, the dynamic time as well as the cooling time. We find that the angular spreading timescale caused by curvature effect of fireball surface only contributes to the falling part of the observed pulses, while the dynamic one in the co‐moving frame of the shell merely contributes to the rising portion of pulses provided the radiative time is negligible. In addition, the pulses resulted from the pure radiative cooling time of relativistic electrons exhibit properties of fast rise and slow decay (a quasi‐FRED) profile together with smooth peaks. Besides, we interpret the phenomena of wider pulses tending to be more asymmetric to be a consequence of the difference in emission regions. Meanwhile, we find the intrinsic emission time is decided by the ratios of lorentz factors and radii of the shells between short and long bursts. Based on the analysis of asymmetry, our results suggest that the long GRB pulses may occur in the regions with larger radius, while the short bursts could locate at the smaller distance from central engine. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
33.
Averaged many-year measurement data on the concentrations of mineral forms of biogenic elements are analyzed, and their total concentrations in the rivers of Selenga, Chikoi, Khilok, Uda, Dzhida, and Temnik are evaluated. The monthly variations of the concentrations of major biogenic substances are characterized, and their ratios within a year are determined. Characteristics of river water runoff and biogenic substance concentrations are used to evaluate their within-year discharge by rivers. Characteristic variations in the ratios between the total and mineral forms of biogenic elements discharged by rivers have been revealed. It is established that the share of mineral components in the total input into the Selenga delta Ntot and Ptot are 82 and 22%, respectively.  相似文献   
34.
Abstract— –CR chondrites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites. Three CRs, Elephant Moraine (EET) 92042, Graves Nunataks (GRA) 95229, and Grosvenor Mountains (GRO) 95577, were analyzed for their amino acid content using high‐performance liquid chromatography with UV fluorescence detection (HPLC‐FD) and gas chromatography–mass spectrometry (GC‐MS). Our data show that EET 92042 and GRA 95229 are the most amino acid–rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 ppm to 249 ppm. The most abundant amino acids present in the EET 92042 and GRA 95229 meteorites are the α‐amino acids glycine, isovaline, α‐aminoisobutyric acid (α‐AIB), and alanine, with δ13C values ranging from +31.6‰ to +50.5‰. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly indicate an extraterrestrial origin for these compounds. Compared to Elephant Moraine (EET) 92042 and GRA 95229, the more aqueously altered GRO 95577 is depleted in amino acids. In both CRs and CMs, the absolute amino acid abundances appear to be related to the degree of aqueous alteration in their parent bodies. In addition, the relative abundances of α‐AIB and β‐alanine in the Antarctic CRs also appear to depend on the degree of aqueous alteration.  相似文献   
35.
Stable isotopes, tritium, radium isotopes, radon, trace elements and nutrients data were collected during two sampling campaigns in the Ubatuba coastal area (south-eastern Brazil) with the aim of investigating submarine groundwater discharge (SGD) in the region. The isotopic composition (δD, δ18O, 3H) of submarine waters was characterised by significant variability and heavy isotope enrichment. The stable isotopes and tritium data showed good separation of groundwater and seawater groups. The contribution of groundwater in submarine waters varied from a few % to 17%. Spatial distribution of 222Rn activity concentration in surface seawater revealed changes between 50 and 200 Bq m−3 which were in opposite relationship with observed salinities. Time series measurements of 222Rn activity concentration in Flamengo Bay (from 1 to 5 kBq m−3), obtained by in situ underwater gamma-spectrometry showed a negative correlation between the 222Rn activity concentration and tide/salinity. This may be caused by sea level changes as tide effects induce variations of hydraulic gradients, which increase 222Rn concentration during lower sea level, and opposite, during high tides where the 222Rn activity concentration is smaller. The estimated SGD fluxes varied during 22–26 November between 8 and 40 cm d−1, with an average value of 21 cm d−1 (the unit is cm3/cm2 per day). The radium isotopes and nutrient data showed scattered distributions with offshore distance and salinity, which implies that in a complex coast with many small bays and islands, the area has been influenced by local currents and groundwater–seawater mixing. SGD in the Ubatuba area is fed by coastal contaminated groundwater and re-circulated seawater (with small admixtures of groundwater), which claims for potential environmental concern with implications on the management of freshwater resources in the region.  相似文献   
36.
The specific features of the generation and intensification of internal gravity wave structures in different atmospheric-ionospheric regions, caused by zonal local nonuniform winds (shear flows), are studied. The model of the medium has been explained and an initial closed system of equations has been obtained in order to study the linear and nonlinear dynamics of internal gravity waves (IGWs) when they interact with the geomagnetic field in a dissipative ionosphere (for the D, E, and F regions).  相似文献   
37.
38.
Z. Švestka 《Solar physics》1976,47(1):375-384
Three problems are emphasized in particular: the preflare magnetic field configuration, velocity fields, and the nature of acceleration processes in flares. It is concluded that what we need most urgently are high-resolution hard X-ray, soft X-ray, and EUV-pictures, coronal spectra, and magnetograms with high resolution both in space and time. A space-shuttle equipped with instrumentation of this kind would contribute significantly to our knowledge of the flare process.  相似文献   
39.
Partitioning of volatile chemicals among the gas, liquid, and solid phases during freezing of liquid water in clouds can impact trace chemical distributions in the troposphere and in precipitation. We describe here a numerical model of this partitioning during the freezing of a supercooled liquid drop. Our model includes the time-dependent calculation of the coupled processes of crystallization kinetics, heat transport, and solute mass transport, for a freezing hydrometeor particle. We demonstrate the model for tracer partitioning during the freezing of a 1000 μm radius drop on a 100 μm ice substrate, under a few ambient condition scenarios. The model effectively simulates particle freezing and solute transport, yielding results that are qualitatively and quantitatively consistent with previous experimental and theoretical work. Results suggest that the ice shell formation time is governed by heat loss to air and not by dendrite propagation, and that the location of ice nucleation is not important to freezing times or the effective partitioning of chemical solutes. Even for the case of nucleation at the center of the drop, we found that dendrites propagated rapidly to form surface ice. Freezing then proceeded from the outside in. Results also indicate that the solid-liquid interfacial surface area is not important to freezing times or the effective partitioning of chemical solutes, and that the rate aspects of trapping are more important than equilibrium solid-liquid partitioning to the effective partitioning resulting from freezing.  相似文献   
40.
We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth’s magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching ?263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号