首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4028篇
  免费   57篇
  国内免费   55篇
测绘学   99篇
大气科学   282篇
地球物理   779篇
地质学   1613篇
海洋学   243篇
天文学   925篇
综合类   7篇
自然地理   192篇
  2023年   18篇
  2022年   30篇
  2021年   31篇
  2020年   27篇
  2019年   39篇
  2018年   127篇
  2017年   126篇
  2016年   171篇
  2015年   80篇
  2014年   172篇
  2013年   218篇
  2012年   154篇
  2011年   183篇
  2010年   188篇
  2009年   220篇
  2008年   175篇
  2007年   170篇
  2006年   200篇
  2005年   131篇
  2004年   127篇
  2003年   108篇
  2002年   80篇
  2001年   74篇
  2000年   74篇
  1999年   79篇
  1998年   77篇
  1997年   87篇
  1996年   75篇
  1995年   46篇
  1994年   31篇
  1993年   57篇
  1992年   34篇
  1991年   42篇
  1990年   27篇
  1989年   34篇
  1988年   36篇
  1987年   42篇
  1986年   52篇
  1985年   41篇
  1984年   45篇
  1983年   43篇
  1982年   46篇
  1981年   34篇
  1980年   31篇
  1979年   35篇
  1977年   20篇
  1976年   21篇
  1975年   23篇
  1974年   20篇
  1973年   23篇
排序方式: 共有4140条查询结果,搜索用时 15 毫秒
791.
We present a case study of two successive filament eruptions at the southeast limb of the Sun observed by Solar Dynamics Observatory (SDO) on 2012 April 19. At the initial stage of the first filament (F1) eruption, one leg of the F1 moved toward the second filament (F2) and swept the F2. The interaction between two filaments occurred. After the leg of the F1 swept the F2, it returned from northeast to southwest following the F1 expansion. During the F1 eruption, the middle of the F1 exhibited an obvious twisted structure. The rising speed of the F1 was 85.6 km/s. The partial material of the F1 fell back to the surface along the other leg of the F1 after the F1 eruption and the falling speed was 311.6 km/s. A CME was observed by SOHO/LASCO after the F1 eruption. One of the bright flare ribbons and the dimming regions formed after the F1 eruption were found to move toward the F2. The propagation speeds of the flare ribbons were 4.7 km/s and 4.1 km/s and the propagation speeds of the dimmings were 3 km/s and 6.3 km/s. The small active region was emerging in the northern flank of the F2. The ejection and the falling plasma in the small active region produced the disturbance to the right part of the F2. When the F1 erupted, the large-scale overlying coronal loops of the F1 were pushed out toward the southeast of the Sun by its expanding. During the F1 eruption, the large-scale overlying coronal loops of the F2 began to open toward the southeast. Following the opening of the large-scale overlying coronal loops, the F2 became instable and began to erupt. The rising speed of the F2 was 300.1 km/s. A two-ribbon flare and a weak CME were formed after the F2 eruption. These observations evidenced that the interaction of two filaments and the opening of the large-scale overlying coronal loops caused by the F1 eruption are the most important reason that led to the F2 eruption. Our observations also support the standard solar flare model.  相似文献   
792.
The geochemical characteristics of melt inclusions and their host olivines provide important information on the processes that create magmas and the nature of their mantle and crustal source regions. We report chemical compositions of melt inclusions, their host olivines and bulk rocks of Xindian basalts in Chifeng area, North China Craton. Compositions of both bulk rocks and melt inclusions are tholeiitic. Based on petrographic observations and compositional variation of melt inclusions, the crystallizing sequence of Xindian basalts is as follows: olivine (at MgO > ~5.5 wt%), plagioclase (beginning at MgO = ~5.5 wt%), clinopyroxene and ilmenite (at MgO < 5.0 wt%). High Ni contents and Fe/Mn ratios, and low Ca and Mn contents in olivine phenocrysts, combining with low CaO contents of relatively high MgO melt inclusions (MgO > 6 wt%), indicate that Xindian basalts are possibly derived from a pyroxenite source rather than a peridotite source. In the CS-MS-A diagram, all the high MgO melt inclusions (MgO > 6.0 wt%) project in the field between garnet + clinopyroxene + liquid and garnet + clinopyroxene + orthopyroxene + liquid near 3.0 GPa, further suggesting that residual minerals are mainly garnet and clinopyroxene, with possible presence of orthopyroxene, but without olivine. Modeling calculations using MELTS show that the water content of Xindian basalts is 0.3–0.7 wt% at MgO = 8.13 wt%. Using 20–25 % of partial melting estimated by moderately incompatible element ratios, the water content in the source of Xindian basalts is inferred to be ≥450 ppm, much higher than 6–85 ppm in dry lithospheric mantle. The melting depth is inferred to be ~3.0 GPa, much deeper than that of tholeiitic lavas (<2.0 GPa), assuming a peridotite source with a normal mantle potential temperature. Such melting depth is virtually equal to the thickness of lithosphere beneath Chifeng area (~100 km), suggesting that Xindian basalts are derived from the asthenospheric mantle, if the lithospheric lid effect model is assumed.  相似文献   
793.
Zircon, monazite, and xenotime have proven to be valuable chronometers for various geological processes due to their commonly high-U–Th and low common Pb contents. However, zircons that have crystallized in highly fractionated granites often have such high-U contents that radiation damage can lead to scattered U–Pb ages when measured with secondary ion mass spectrometry (SIMS). In this study, monazite and xenotime were separated from a number of highly fractionated granites at the Xihuashan tungsten mine, Southeast China, for alternative dating methods by SIMS. For monazite analysis, obvious excess 204Pb signal (mainly from interference of 232Th144Nd16O2 ++) was observed in high-Th (>2 wt%) monazite, which hinders 204Pb-based common Pb corrections. A 207Pb-based common Pb correction method was used instead. By employing power law relationships between Pb+/U+ versus UO2 +/U+, Pb+/Th+ versus ThO2 +/Th+ and suitable exponentials, monazites with ThO2 contents in the range of ~3–19 % do not exhibit this matrix effect. Independent SIMS U–Pb ages and Th–Pb ages of three phases of Xihuashan granite samples were consistent with each other and yielded dates of 158.7 ± 0.7, 158.0 ± 0.7, and 156.9 ± 0.7 Ma, respectively. Xenotime does show marked matrix effects due to variations of U, Th, and Y [or total rare earth element (REE), referred as ΣREE hereafter] contents. Suitable correction factors require end-member standards with extremely high or low U, Th, and Y (or ΣREE) contents. No excess 204Pb was observed, indicating that the 204Pb-based common Pb correction method is feasible. Independent 207Pb/206Pb ages can be obtained, although multi-collector mode is necessary to improve precision. The main difficulties with dating xenotime are when high-Th (U) mineral inclusions are ablated. We can identify when this occurs, however, by comparing the measured UO2 +/U+ and ThO2 +/Th+ with those in xenotime standards. Three xenotime samples from the first phase of Xihuashan granite yielded a weighted mean 207Pb/206Pb date of 159.5 ± 4.4 Ma (MSWD = 1.0) and a 206Pb/238U date of 159.4 ± 0.9 Ma (MSWD = 1.6), which are consistent with monazite U–Pb and Th–Pb ages from the same granites. This study demonstrates that monazite and xenotime are better SIMS chronometers for highly fractionated granites than zircon, which can yield doubtful ages due to high-U contents.  相似文献   
794.
The cracked chevron-notched Brazilian disc (CCNBD) was proposed by the International Society for Rock Mechanics (ISRM) to test the mode I (opening mode) fracture toughness of rock. The test method has been vigorously discussed and debated, despite being the subject of intensive research for decades. The minimum (critical) dimensionless stress intensity factors affiliated with the formula for calculating the fracture toughness using CCNBD specimens with different geometric parameters remain elusive and complex. The matter cannot be resolved by simply replacing the diameter in the original formula with the radius, as claimed by several authors. In this paper, the formula is fundamentally improved, as wide-ranging minimum dimensionless stress intensity factors pertaining to diversified CCNBD geometries are recalibrated by three-dimensional finite element analysis, and an expression with tabulated coefficients is obtained through curve-fitting the data obtained from the numerical calibration. The present results are shown to be more accurate than those in the literature. Furthermore, the importance of the reasonability of the results is highlighted; a comprehensive comparison of different values shows that the upper bounds of minimum stress intensity factors are violated by the above claim. The confusion resulting from the claim is, thus, clarified conclusively.  相似文献   
795.
The Liverpool Plains in northern New South Wales contain some of the best agricultural land in Australia and are underlain by extensive smectite clay-dominated soils sourced from weathering the alkali basalts of the Liverpool Ranges. It had been thought that a relatively simple geological model explained the underlying Cenozoic sequence with salt-rich clays of the Narrabri Formation overlying sands and gravel aquifers comprising the Gunnedah Formation. Extensive groundwater modelling based upon this simple conceptualisation has been used in management plans proposed by the mining and agricultural industries. A 31.5 m core has been recovered using minimally disturbed triple-tube coring methods at Cattle Lane (Latitude –31.52° S, Longitude 150.47° E) to resolve uncertainty concerning the aquitard status of the upper layer. Recovered core has been examined and tested to determine grainsize, cation-exchange capacity, X-ray diffraction, X-ray fluorescence and microscopic examination of granular components. These measurements complement surface and borehole geophysical techniques, hydrogeological data and hydrochemical analysis of water samples recovered from a series of specially constructed piezometers adjacent to the cored hole. The sequence overlies a Late Cretaceous channel cut into Permian bedrock at 91 m depth with sands and clays below 31.5 m considered to represent various alluvial fill events mostly occurring since the Early Pliocene. Erosion of Late Eocene alkali basalts on the Liverpool Ranges, with the formation of smectite clays, pedogenic carbonates and with the addition of quartz from both eolian sources and locally derived from adjacent Triassic sandstone hills, provides the great majority of the sediment recovered from the cores. Late Pleistocene (114 ka) to Holocene ages were determined for the core from three optically stimulated luminescence (OSL) measurements on fine sands (13, 23 and 29 m BG). Detailed examination has failed to detect any evidence of a boundary between Narrabri and Gunnedah formations revealing rather a gradual change in dominance of clays and silts over sands and gravels embedded in a clay-rich matrix. This result challenges the conceptualisation used to conduct groundwater modelling on the Liverpool Plains.  相似文献   
796.
The Early Caledonian folded area of Central Asia comprises a variety of continental crust fragments with Early to Late Precambrian crystalline basement. Crystalline rocks, which form part of the Songino block, outcrop at the junction between the Dzabkhan and Tuva-Mongolian terranes. The Bayannur zone in the southern part of the Songino block contains the Bayannur migmatite-gneiss and Kholbonur terrigenous-metavolcanic metamorphic complexes. Previous studies provide the 802 ± 6 Ma age for the regional metamorphism and folding within the Bayannur complex. On the basis of the minimum Nd model age of 1.5 Ga, gneisses from this complex cannot be regarded as Early Precambrian. Two main rock associations were distinguished in the Kholbonur complex. Mafic metavolcanics compose the dominant lithology of the first rock association, whereas the second association comprises terrigenous-volcanic and predominantly terrigenous suites. The rocks of the predominantly terrigenous suite, including mudstones, sandstones, and conglomerates, are interpreted to derive from the Late Riphean accretionary prism. The lithology and composition of metaterrigenous rocks suggest that they were possibly derived from erosion of a volcanic arc. The upper age limit of this suite is constrained by postkinematic granites (790 ± 3 Ma; U-Pb zircon), the lower age is given by plagiogranite (874 ± 3 Ma; U-Pb zircon) from comglomerate pebbles. Therefore, the timing of deposition of this terrigenous suite can be bracketed by the 874–790 Ma time interval. These ages and compositional features of the Kholbonur complex terrigenous rocks suggest that the convergence took place at around 870–880 Ma and thus it can be correlated with the divergent processes between the blocks of continental crust composing the supercontinent Rodinia.  相似文献   
797.
El-Hussain  I.  Deif  A.  Al-Jabri  K.  Mohamed  A. M. E.  Al-Rawas  G.  Toksöz  M. N.  Sundararajan  N.  El-Hady  S.  Al-Hashmi  S.  Al-Toubi  K.  Al-Saifi  M.  Al-Habsi  Z. 《Natural Hazards》2013,69(3):1919-1950
Natural Hazards - Site characterization was carried out for Muscat region using the ambient noise measurements applying the horizontal-to-vertical spectral ratio (HVSR) technique and using active...  相似文献   
798.
799.
This paper presents the U-Pb zircon age of pulaskite of the main phase (294 ± 1 Ma) and the rare metal syenite (283 ± 8 Ma) of the Burpala alkaline pluton. The geochronological data show that it was formed in the Early Permian. By age, it is comparable with the Synnyr pluton of the Synnyr rift zone, alkaline granitic rocks and bimodal volcanic associations of the Uda-Vitim rift zone, and carbonatites of the Saizhen rift zone of the Central Asian foldbelt. These intraplate igneous complexes were formed almost simultaneously with crustal granitic rocks of the Angara-Vitim batholite. All of this gives ground to suppose that the origination of their parental melts is a result of the influence of the mantle hot spot or mantle plume on the lithosphere that led to extensive crustal anatexis.  相似文献   
800.
New isotope-geochronological data (K-Ar, Rb-Sr) provide tight geochronological constraints on the history of Late Cenozoic magmatism on the southern slope of the Greater Caucasus. Several previously unknown, rhyodacite intrusive bodies with an emplacement age of 6.9 ± 0.3 Ma (Late Miocene) are reported from the Kakheti-Lechkhumi regional fault zone in the Kvemo Svaneti-Racha area. Therefore, a pulse of acid intrusive magmatism took place in a period previously considered amagmatic in the Greater Caucasus. The petrological, geochemical, and isotopic data suggest that these rhyodacites are produced by crystallization differentiation of mantle-derived magmas, which are similar in composition to Miocene mafic lavas that erupted a few hundred thousand years later in the adjacent Central Georgian neovolcanic area. The presented results allow the conclusion that the volcanic activity within the Central Georgian neovolcanic area occurred at 7.2–6.0 Ma in two discrete pulses: (1) the emplacement of acid intrusions and (2) the eruption of trachybasaltic lavas. The emplacement of rhyodacite intrusions in the Kvemo Svaneti-Racha area marked the first pulse of young magmatism on the southern slope of the Main Caucasus range and simultaneously represented the second magmatic pulse (after granitoid magmatism of the Caucasian Mineral Waters region) within the entire Greater Caucasus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号