首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30433篇
  免费   734篇
  国内免费   1658篇
测绘学   1649篇
大气科学   2960篇
地球物理   5850篇
地质学   14138篇
海洋学   1524篇
天文学   2663篇
综合类   2409篇
自然地理   1632篇
  2023年   53篇
  2022年   137篇
  2021年   146篇
  2020年   135篇
  2019年   142篇
  2018年   4955篇
  2017年   4240篇
  2016年   2827篇
  2015年   417篇
  2014年   382篇
  2013年   369篇
  2012年   1265篇
  2011年   3065篇
  2010年   2295篇
  2009年   2638篇
  2008年   2154篇
  2007年   2623篇
  2006年   373篇
  2005年   417篇
  2004年   593篇
  2003年   590篇
  2002年   411篇
  2001年   184篇
  2000年   214篇
  1999年   188篇
  1998年   212篇
  1997年   193篇
  1996年   170篇
  1995年   121篇
  1994年   104篇
  1993年   135篇
  1992年   76篇
  1991年   84篇
  1990年   54篇
  1989年   61篇
  1988年   63篇
  1987年   61篇
  1986年   65篇
  1985年   51篇
  1984年   58篇
  1983年   51篇
  1982年   53篇
  1981年   62篇
  1980年   53篇
  1979年   36篇
  1977年   21篇
  1976年   29篇
  1975年   23篇
  1974年   20篇
  1973年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
Earth System Science (ESS) observational data are often inadequately semantically enriched by geo-observational information systems to capture the true meaning of the associated data sets. Data models underpinning these information systems are often too rigid in their data representation to allow for the ever-changing and evolving nature of ESS domain concepts. This impoverished approach to observational data representation reduces the ability of multi-disciplinary practitioners to share information in a computable way. Object oriented techniques that are typically employed to model data in a complex domain (with evolving domain concepts) can unnecessarily exclude domain specialists from the design process, invariably leading to a mismatch between the needs of the domain specialists, and how the concepts are modelled. In many cases, an over simplification of the domain concept is captured by the computer scientist. This paper proposes that two-level modelling methodologies developed by health informaticians to tackle problems of domain specific use-case knowledge modelling can be re-used within ESS informatics. A translational approach to enable a two-level modelling process within geo-observational sensor systems design is described. We show how the Open Geospatial Consortium’s (OGC) Observations & Measurements (O&M) standard can act as a pragmatic solution for a stable reference-model (necessary for two-level modelling), and upon which more volatile domain specific concepts can be defined and managed using archetypes. A rudimentary use-case is presented, followed by a worked example showing the implementation methodology and considerations leading to an O&M based, two-level modelling design approach, to realise semantically rich and interoperable Earth System Science based geo-observational sensor systems.  相似文献   
902.
Quantifying land use patterns and functions is critical for modeling urban ecological processes, and an emerging challenge is to apply models at multiple spatial scales. Methods of determining the optimum scale of land use patterns are commonly considered using landscape metrics. Landscape metrics are quantitative indicators for analyzing landscape heterogeneity at the landscape level. In this study, due to their widespread use in urban landscape analyses and well-documented effectiveness in quantifying landscape patterns, landscape metrics that represent dominance, shape, fragmentation and connectivity were selected. Five metrics include Patch Density, Contagion, Landscape Shape Index, Aggregation Index and Connectivity. Despite a wide application of landscape metrics for land use studies, the majority mainly focuses on the qualitative analysis of the characteristics of landscape metrics. The previous models are limited in exploring the optimum scale of land use patterns for their lack of quantitation. Therefore, taking the City of Wuhan as an example, the land use unit was treated as a patch, and the landscape pattern metrics at different spatial scales were calculated and compared so as to find the optimum one. Furthermore, a mathematical model of landscape metrics was proposed to quantify the scale effect of urban land use patterns, generating a complementary tool to select the optimum scale. In addition, Analytic Hierarchy Process (AHP) was introduced to determine the respective weights of the chosen landscape metrics in this model. Fractal dimension was ultimately applied to verify the chosen optimum scale of our study region. The results indicated that 60 m is confirmed to be the optimum scale for capturing the spatial variability of land use patterns in this study area.  相似文献   
903.
Viewshed analysis is widely used in many terrain applications such as siting problem, path planning problem, and etc. But viewshed computation is very time-consuming, in particular for applications with large-scale terrain data. Parallel computing as a mainstream technique with the tremendous potential has been introduced to enhance the computation performance of viewshed analysis. This paper presents a revised parallel viewshed computation approach based on the existing serial XDraw algorithm in a distributed parallel computing environment. A layered data-dependent model for processing data dependency in the XDraw algorithm is built to explore scheduling strategy so that a fine-granularity scheduling strategy on the process-level and thread-level parallel computing model can be accepted to improve the efficiency of the viewshed computation. And a parallel computing algorithm, XDraw-L, is designed and implemented taken into account this scheduling strategy. The experimental results demonstrate a distinct improvement of computation performance of the XDraw-L algorithm in this paper compared with the coarse-partition algorithm, like XDraw-E which is presented by Song et al. (Earth Sci Inf 10(5):511–523, 2016), and XDraw-B that is the basic algorithm of serial XDraw. Our fine-granularity scheduling algorithm can greatly improve the scheduling performance of the grid cells between the layers within a triangle region.  相似文献   
904.
905.
Coastal aquifers are usually exposed to saltwater intrusion. Therefore, groundwater extracted from these aquifers should be regulated considering their dimensions and effective parameters. In this paper, optimum discharge from a large number of exploitation wells is evaluated according to variations of width, length, and anisotropy coefficient in the Qom aquifer near the salt lake in central Iran. First, the wells are divided into clusters to decrease the number of decision variables. Then, the location and discharge from each cluster is obtained using SEAWAT and charged system search (CSS) simulation–optimization model with the assumption of three-dimensional variable density flow. The maximum discharge considering various anisotropy rates is computed based on different values of lengths and widths of the aquifer. Finally, an M5-tree model is trained using the obtained samples to derive a linear relationship between input and output data. Based on the results, for various ranges of width and length of an aquifer with impermeable boundaries, different linear equations for optimum discharge are obtained. Also, it was found that for an aquifer with a small width, the critical discharge is a function of the length while the effect of the boundaries is negligible. Sensitivity analysis of the anisotropy coefficient reveals that with increasing the anisotropy rate, thickness and slope of the transition zone decrease and as the maximum discharge increases consequently. However, the sensitivity of the discharge to anisotropy rate is not remarkable. A comparison between the results of this study with those of the analytical method based on sharp interface assumption is carried out. For the critical condition, the best agreement between analytical equation (\(\overline {L} =0.87\overline {W} +0.62\)) and proposed method (\(\overline {L} =0.83\overline {W} - 1.41\)) is achieved for the anisotropic aquifer when the 50% isochlor is assumed as the measure of salt water intrusion.  相似文献   
906.
The groundwater (GW) makes an important part of a region runoff. GW bodies playing the role of accumulating reservoirs regulate the GW discharge enabling the river flow to have more uniform long-term distribution. Along with other important advantages, the GW offers the users stable water abstraction rate independent from the recharge rate. The GW recharge quantification belongs to the uneasy tasks in the water resource management. Applying the conventional methods needs multiyear observation records of the variation of the groundwater body (GWB) characteristics. The employment of hydrology models avoids that necessity but requires great amount of data related to the soil hydraulic properties, the land topography and cover of the GWB watershed and long-term records of the climatic effects. The paper presents an introduction of the mathematical model CLM3 into the GW recharge estimation problem. It is a complex and advanced model with adequate interpretation of the water-related processes in the soil and on the land surface under atmospheric effects. The input is available from NCEP/NCAR reanalysis atmosphere data and the International Geosphere-Biosphere Program (IGBP) data base. The model is applied to GW recharge assessment of the Bulgarian Danube district for the year 2013. The obtained monthly and yearly total district values and the areal distribution of the infiltration intensity are matched to the existing field observation-based estimates. The study shows that the CLM3 model approach leads to encouraging results. The method comes very useful with GWB lacking regime observation data as well as for GW recharge prognostic assessments under climatic scenarios.  相似文献   
907.
CO2 geological storage is a transitional technology for the mitigation of climate change. In the vicinity of potential CO2 reservoirs in Hungary, protected freshwater aquifers used for drinking water supplies exist. Effects of disaster events of CO2 escape and brine displacement to one of these aquifers have been studied by kinetic 1D reactive transport modelling in PHREEQC. Besides verifying that ion concentrations in the freshwater may increase up to drinking water limit values in both scenarios (CO2 or brine leakage), total porosity of the rock is estimated. Pore volume is expected to increase at the entry point of CO2 and to decrease at further distances, whereas it shows minor increase along the flow path for the effect of brine inflow. Additionally, electrical conductivity of water is estimated and suggested to be the best parameter to measure for cost-effective monitoring of both worst-case leakage scenarios.  相似文献   
908.
Based on γ-radiation dose rate and radon concentration measurements and 238U, 232Th, 226Ra, and 40K radionuclide testing, this study identifies the radioactive anomalies of stone coal-bearing strata in East China and evaluates the natural radioactivity levels in the air, solid, water and plant media in the typical area of the regional stone coal-bearing layers. The stone coal-bearing strata in East China occur in the lower Cambrian system along the margin of the Yangtze block; additionally, the radioactive anomaly area is sporadically distributed in the stone coal-bearing layers. The background values of 238U, 232Th, 226Ra, and 40K are higher in the stone coal-bearing areas, and the spatial distribution of these natural radionuclides shows significant variability. 238U and 226Ra clearly accumulate in the coal, coal gangue and soil and are the main sources of the environmental radiation in coal mines. The γ-radiation shows a higher background value in the stone coal-bearing area, and this radioactive pollution cannot be ignored. Typically, the effective dose of γ-radiation exceeds the limit value of 5 mSv/a, and the total α and total β concentrations of the groundwater are 10–30 times the limit value at some points. The residents near the mining area are subjected to a higher radiation dose, and the groundwater, building materials, and plants have been contaminated by the radioactive pollution sporadically through time. It is necessary to strengthen the monitoring work of radioactive environments and to take appropriate control measures.  相似文献   
909.
The CO2 migrated from deeper to shallower layers may change its phase state from supercritical state to gaseous state (called phase transition). This phase transition makes both viscosity and density of CO2 experience a sharp variation, which may induce the CO2 further penetration into shallow layers. This is a critical and dangerous situation for the security of CO2 geological storage. However, the assessment of caprock sealing efficiency with a fully coupled multi-physical model is still missing on this phase transition effect. This study extends our previous fully coupled multi-physical model to include this phase transition effect. The dramatic changes of CO2 viscosity and density are incorporated into the model. The impacts of temperature and pressure on caprock sealing efficiency (expressed by CO2 penetration depth) are then numerically investigated for a caprock layer at the depth of 800 m. The changes of CO2 physical properties with gas partial pressure and formation temperature in the phase transition zone are explored. It is observed that phase transition revises the linear relationship of CO2 penetration depth and time square root as well as penetration depth. The real physical properties of CO2 in the phase transition zone are critical to the safety of CO2 sequestration. Pressure and temperature have different impact mechanisms on the security of CO2 geological storage.  相似文献   
910.
The present study focuses on the Balason river running through the Himalayan piedmont zone (near Siliguri, India). The objective of the study is an assessment of the environmental effects of river bed material extraction by humans and the dependence of indigenous people on the river and its ecosystem services. The analysis is based on results of field work consisting of geodetic measurements of the river channel and interviews among the local community from the Nimtijot village. Historical hydrological data were also used for the study. The results of the investigation show that the Balason river is heavily affected by excessive exploitation of river bed material during dry season and the replenishment of extracted material in a monsoon season is not always sufficient. It leads to channel deepening. The local community working in the river heavily depends for its livelihood on continuing this activity. A decreasing amount of bed material to be extracted may lead to degradation of the strong relationship between the local community and their natural environment (river).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号