首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   567篇
  免费   13篇
  国内免费   18篇
测绘学   1篇
大气科学   46篇
地球物理   138篇
地质学   118篇
海洋学   177篇
天文学   89篇
综合类   6篇
自然地理   23篇
  2021年   6篇
  2020年   3篇
  2019年   7篇
  2018年   11篇
  2017年   10篇
  2016年   12篇
  2015年   5篇
  2014年   23篇
  2013年   17篇
  2012年   21篇
  2011年   28篇
  2010年   24篇
  2009年   30篇
  2008年   20篇
  2007年   31篇
  2006年   17篇
  2005年   35篇
  2004年   23篇
  2003年   17篇
  2002年   20篇
  2001年   17篇
  2000年   19篇
  1999年   17篇
  1998年   10篇
  1997年   10篇
  1996年   5篇
  1995年   8篇
  1994年   9篇
  1993年   13篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   6篇
  1988年   5篇
  1987年   9篇
  1986年   9篇
  1985年   8篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   10篇
  1979年   6篇
  1978年   11篇
  1977年   5篇
  1976年   4篇
  1975年   3篇
  1974年   7篇
  1971年   3篇
  1968年   4篇
排序方式: 共有598条查询结果,搜索用时 421 毫秒
11.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
12.
The higher mode predominance in the current velocity fields associated with wind-induced shelf waves in the nondispersive regime is studied with a special attention to the effect of the geographical boundary, e.g. wide strait or wide bank areas. The effect of such large topographic change is represented by wind forcing with a finite dimension near the geographical boundary. The time development processes of the wind-induced shelf waves is examined in the context of an initial-value problem, where a spatially finite wind stress is applied att=0. Various modes of shelf waves excited at the boundary start propagating simultaneously and develop monotonically within the forcing region. After the passage of such wave, the energy of wind is used to maintain the attained equilibrium condition, i.e. the steady shelf circulation. The current evolution of the lower mode is restricted to the earlier stage because of the large propagation speed. In contrast, the higher mode waves can travel slowly within the forcing region so that the kinetic energy is supplied from wind stress for a long time before the equilibrium condition is established. Consequently, the observation at the fixed point near the geographical boundary would show that the higher mode waves gradually dominate as time goes on, i.e. for the long-term forcing.  相似文献   
13.
Vertical distribution of anthropogenic carbon content of the water (exDIC) in the Oyashio area just outside of the Kuroshio/Oyashio Interfrontal Zone (K/O Zone) was estimated by the simple 1-D advection-diffusion model calibrated by the distribution of chlorofluorocarbons (CFCs). The average concentration of exDIC for = 26.60–27.00 is multiplied by the volume transport of Oyashio water into the North Pacific Intermediate Water (NPIW) to estimate the annual transport of exDIC into NPIW through K/O Zone. The estimated transport of exDIC was 0.018–0.020 GtC/y, which corresponds to 15% of the whole total exDIC accumulation in the temperate North Pacific. A simple assessment using the NPIW 1-box model indicates that the current study explains at least 70% of the total annual transport of exDIC into NPIW, and that small exDIC sources for NPIW still exists in addition to K/O Zone.  相似文献   
14.
Jellyfish patch formation is investigated by conducting a drifter experiment combined with aerial photography of a sustained patch of the moon jellyfish in Hokezu Bay, Japan. Jellyfish patches are aggregations of individuals that are caused by a combination of swimming (active influence) and advection by currents (passive influence). The drifter experiment involved the injection of 49 drifters around a distinct surface patch of jellyfish within an area of approximately 300 m × 300 m. The drifters’ motion, caused only by the passive influence, was recorded in a series of 38 aerial photographs taken over approximately 1 h. The ambient uniform current field larger than the patch scale was estimated from the movement of the centroid position of drifters, while the distribution of horizontal divergence and relative vorticity around the patch was estimated from the time-derivative in areas of triangles formed by the drifters. The centroid positions of both drifters and patches moved stably toward the bay head at different speeds. The difference vector between the patch and drifter centroids was directed to the sun, and was opposite to the ambient current. The distributions of vorticity and divergence around patches exhibited inhomogeneity within the patch scale, and the drifters in this nonuniform current field aggregated near the convergence area within 1 h. The results suggest that horizontal patch formation is predominantly influenced by passive factors at the surface of Hokezu Bay. Furthermore, the upward swimming against downwelling may make sustained patch in surface layer.  相似文献   
15.
Water plumes, 20 km long or less, identified by low temperature, high salinity and high nutrient concentrations, were observed on the eastern side of Izu Islands where the Kuroshio Current or its branch flowed eastward. The T-S diagrams and the vertical profiles of oceanographic variables indicated that the water plumes resulted from the upwelling of subsurface water. A newly formed plume, characterized by a sharp temperature front and high nutrient concentrations, contained less chlorophyll than did old plumes. It is suggested that the upwelling plumes are maintained for a period long enough to allow luxuriant growth of phytoplankton.  相似文献   
16.
Physical oceanography   总被引:2,自引:0,他引:2  
  相似文献   
17.
Evidence for the applicability of GEK (Geomagnetic Electrokinetography) measurements to shallow water regions is provided from observations in the shelf region of the East China Sea. The reason for the effectiveness of GEK measurements in this case is investigated theoretically, and it is shown to be attributable to the existence of a thick conductive sedimentary layer. In addition, it is shown that low conductive basement rock can be regarded as a good conductor for GEK measurements if the current width is broad enough and if the ratio of current width to water depth is larger than the resistivity ratio of basement rock to sea water. This implies that barotropic tidal currents can be measured with GEK in any ocean on the earth if they have significant magnitudes.  相似文献   
18.
The physico-chemical states of artificial radionuclides,90Sr,137Cs and144Ce in seawater were investigated by radiochemical analysis of filtered and unfiltered seawater. The difference of radionuclide concentrations between unfiltered and filtered seawaters was defined as the particulate form radioisotope and its particle ratio was discussed.Practically no particulate90Sr, greater than 0.22 in size, was observed in both coastal and open seawaters, but some of137Cs seemed to be insoluble in some circumstances, especially in coastal waters. A considerable amount of144Ce was found to be particulate.An estimation of the radionuclides in particulate form was made for Kashima-nada seawaters collected in 1970 to 1972, and it was shown that the possible occurrence of particulate radionuclides, greater than 0.22 in size, were 1% or less for90Sr and 6% for137Cs. In the coastal water, 80 % of144Ce were seemed to be in particulate form, but in the open seawater only a few%. The influences of suspended materials to137Cs and144Ce concentration levels in seawater were not negligible and further investigations are desirable.  相似文献   
19.
In order to understand the actual formation process of the North Pacific Intermediate Water (NPIW), structure of subsurface intrusions of the Oyashio water and the mixing of the Oyashio and the Kuroshio waters in and around the Kuroshio Extension (KE) were examined on the basis of a synoptic CTD observation carried out in May-June 1992. The fresh Oyashio water in the south of Hokkaido was transported into KE region through the Mixed Water Region (MWR) in the form of subsurface intrusions along two main paths. The one was along the east coast of northern Japan through the First Branch of the Oyashio (FBO) and the other along the eastern face of a warm streamer which connected KE with a warm core ring through the Second Branch of the Oyashio (SBO). The fresh Oyashio water extended southward through FBO strongly mixed with the saline NPIW transported by the Kuroshio in the south of Japan (old NPIW) in and around the warm streamer. On the other hand, the one through SBO well preserved its original properties and extended eastward beyond 150°E along KE with a form of rather narrow band. The intrusion ejected Oyashio water lens with a diameter of 50–60 km southward across KE axis and split northward into the MWR involved in the interaction of KE and a warm core ring, which were supposed to be primary processes of new NPIW formation.  相似文献   
20.
By using existing data obtained in the offshore area from the Boso Peninsula to the Joban Coast, it was shown that the double structure of the Kuroshio Front — which is usually found along the northern edge of the Kuroshio Extension to the east 143°E (Nagataet al., 1986 ; Shinet al., 1988) — is hardly found at the edge of the Kuroshio when it is flowing along the Japanese coast or in the area to the west of 142°E. It was suggested that the cold and fresh water core beneath the density front of the double structure originates from the fresh and cold Oyashio Water which is captured beneath the Kuroshio Front just off the Kashima Coast. The double structure of the Kuroshio Front would be generated and developed very rapidly in the region between 142°E and 143°E just after the Kuroshio leaves the Japanese coast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号