全文获取类型
收费全文 | 103篇 |
免费 | 3篇 |
国内免费 | 12篇 |
专业分类
测绘学 | 1篇 |
大气科学 | 2篇 |
地球物理 | 25篇 |
地质学 | 58篇 |
海洋学 | 19篇 |
天文学 | 7篇 |
综合类 | 3篇 |
自然地理 | 3篇 |
出版年
2023年 | 1篇 |
2022年 | 1篇 |
2021年 | 6篇 |
2020年 | 5篇 |
2019年 | 8篇 |
2018年 | 9篇 |
2017年 | 7篇 |
2016年 | 2篇 |
2015年 | 5篇 |
2014年 | 5篇 |
2013年 | 9篇 |
2012年 | 8篇 |
2011年 | 11篇 |
2010年 | 5篇 |
2009年 | 3篇 |
2008年 | 13篇 |
2007年 | 1篇 |
2006年 | 9篇 |
2005年 | 3篇 |
2004年 | 2篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1994年 | 1篇 |
1993年 | 1篇 |
排序方式: 共有118条查询结果,搜索用时 0 毫秒
81.
It is essential to clarify the lithological, structural, and chronological relationships between the Sanbagawa Metamorphic Complex (MC) and the Cretaceous Shimanto Accretionary Complex (AC) for understanding the tectonic evolution of SW Japan. To this end, we carried out a detailed field survey of the Sanbagawa MC and the Cretaceous Shimanto AC on the central Kii Peninsula, where they are in direct contact with each other. We also conducted U–Pb dating of detrital zircons from these complexes. The field survey showed that the boundary between the Iro Complex of the Sanbagawa MC and the Mugitani Complex of the Shimanto AC, Narai Fault, shows a sinistral sense of shear with a reverse dip‐slip component, and there are significant differences in the strain intensity and the degree of recrystallization between the two complexes across this fault. Detrital zircon U–Pb dating indicates that the Iro Complex in the hanging wall of the Narai Fault shows a significantly younger maximum depositional age than the Mugitani Complex in the footwall of the fault, and an apparently large gap in the MDA of ca. 35 Myr exists across this fault. This large age gap across the Narai Fault suggests that this fault is an essential tectonic boundary fault within the Cretaceous accretionary–metamorphic complexes on the Kii Peninsula, and is considered to be an out‐of‐sequence thrust. In addition, a similar shear direction and a large age gap have been identified across the Ui Thrust, which marks the boundary between the Kouyasan and Hidakagawa belts of the Cretaceous Shimanto AC. The Cretaceous accretionary–metamorphic complexes record the large‐scale tectonic juxtapositions of complexes, and these juxtaposed structures had been caused by sinistral–reverse movements on the tectonic boundary faults such as the Narai Fault and the Ui Thrust. 相似文献
82.
Reiko Furusho Yuji Ikeda Wing-Huen Ip Toshihiro Kasuga Yusuke Sato Ming-Shin Chang Jun-ichi Watanabe 《Icarus》2007,190(2):454-458
The NASA's Deep Impact mission was the first impact experiment to a cometary nucleus. The target of the mission was Comet 9P/Tempel, one of the Jupiter family comets. The impact was performed on July 4th, 2005. Imaging polarimetric observations were carried out by Polarimetric Imager for COmets (PICO) mounted on the Lulin One-meter Telescope (LOT) at Lulin Observatory, Taiwan. Intensity and linear polarization degree maps were obtained on July 3-5, 2005. Impact ejecta plume was clearly recognized in the enhanced intensity map. Furthermore, arc-shaped region of high polarization was recognized in the polarization map. Dust grains in this region had larger expansion velocity than the grains which provided the brightest area in the intensity map. comparing our results with the MIR spectroscopy obtained by Subaru Telescope we conclude that very small carbonaceous grains might be responsible for the region of high polarization. 相似文献
83.
Tomoko Ishikawa Yuichiro Ueno Tsuyoshi Komiya Yusuke Sawaki Jian Han Degan Shu Yong Li Shigenori Maruyama Naohiro Yoshida 《Gondwana Research》2008,14(1-2):193
Carbon isotope chemostratigraphy has been used for worldwide correlation of Precambrian/Cambrian (Pc/C) boundary sections, and has elucidated significant change of the carbon cycle during the rapid diversification of skeletal metazoa (i.e. the Cambrian Explosion). Nevertheless, the standard δ13C curve of the Early Cambrian has been poorly established mainly due to the lack of a continuous stratigraphic record. Here we report high-resolution δ13C chemostratigraphy of a drill core sample across the Pc/C boundary in the Three Gorge area, South China. This section extends from an uppermost Ediacaran dolostone (Dengying Fm.), through a lowermost Early Cambrian muddy limestone (Yanjiahe Fm.) to a middle Early Cambrian calcareous black shale (Shuijingtuo Fm.). As a result, we have identified two positive and two negative isotope excursions within this interval. Near the Pc/C boundary, the δ13Ccarb increases moderately from 0 to + 2‰ (positive excursion 1: P1), and then drops dramatically down to − 7‰ (negative excursion 1: N1). Subsequently, the δ13Ccarb increases continuously up to about + 5‰ at the upper part of the Nemakit–Daldynian stage. After this positive excursion, δ13Ccarb sharply decreases down to about − 9‰ (N2) just below the basal Tommotian unconformity. These continuous patterns of the δ13C shift are irrespective of lithotype, suggesting a primary origin of the record. Moreover, the obtained δ13C profile, except for the sharp excursion N2, is comparable to records of other sections within and outside of the Yangtze Platform. Hence, we conclude that the general feature of our δ13C profile best represents the global change in seawater chemistry. The minimum δ13C of the N1 (− 7‰) is slightly lower than carbon input from the mantle, thus implying an enhanced flux of 13C-depleted carbon just across the Pc/C boundary. Hence, the ocean at that time probably became anoxic, which may have affected the survival of sessile or benthic Ediacaran biota. The subsequent δ13C rise up to + 5‰ (P2) indicates an increase of primary productivity or an enhanced rate of organic carbon burial, which should have resulted in lowering pCO2 and following global cooling. This scenario accounts for the cause of the global-scale sea-level fall at the base of the Tommotian stage. The subsequent, very short-term, and exceptionally low δ13C (− 9‰) in N2 could have been associated with the release of methane from gas hydrates due to the sea-level fall. The inferred dramatic environmental changes (i.e., ocean anoxia, increasing productivity, global cooling and subsequent sea-level fall with methane release) appear to coincide with or occur just before the Cambrian Explosion. This may indicate synchronism between the environmental changes and rapid diversification of skeletal metazoa. 相似文献
84.
Yusuke Sawaki Manabu Nishizawa Takeshi Suo Tsuyoshi Komiya Takafumi Hirata Naoto Takahata Yuji Sano Jian Han Yoshiaki Kon Shigenori Maruyama 《Gondwana Research》2008,14(1-2):148
The Precambrian/Cambrian (PC/C) boundary is one of the most important intervals for the evolution of life, represented by prominent biological evolution from the first appearance of soft-bodied animals from the late Neoproterozoic to the sudden diversification of animals with mineralized skeletons in the Cambrian. In South China several areas contain many fossils and are well exposed, suitable for the investigation of PC/C boundary. However, geochronological relationships are still poorly known because of lack of combined detailed investigations of internal structures of zircons and in-situ U–Pb dating.We focus on the internal structure of zircons from a tuff layer within Bed 5 in the Meishucun section on which we undertook cathodoluminescence (CL) imaging and in-situ U–Pb dating with LA-ICP-MS and nano-SIMS. Over 600 zircons from the tuff layer were classified into three types based on their CL images: oscillatory rims, inherited cores and dull structures. U–Pb dating of the internal structure of the zircons by LA-ICP-MS clearly shows a distinct unimodal age population dependent on the structure: 531 ± 17 Ma for the oscillatory rims and 515 Ma for the dull structures. The clear oscillatory zonation, the prismatic morphology, and their occurrence indicate that the oscillatory rims were formed from felsic magmatism, and that the U–Pb nano-SIMS age of 536.5 ± 2.5 Ma records the depositional age of the tuff. Our results indicate that the PC/C boundary is situated below Bed 5, and therefore the bottom of Zone 1 (Marker A) is more appropriate for the PC/C boundary than is the top of Zone 1 (Marker B). The age of a positive anomaly (P2) in the early Cambrian is estimated to be ca. 536 Ma. 相似文献
85.
Yusuke Miyajima Ayaka Saito Hiroyuki Kagi Tatsunori Yokoyama Yoshio Takahashi Takafumi Hirata 《Geostandards and Geoanalytical Research》2021,45(1):189-205
Uncertainty for elemental and isotopic measurements in calcite by LA‐ICP‐MS is largely controlled by the homogeneity of the reference materials (RMs) used for calibration and validation. In order to produce calcite RMs with homogeneous elemental and isotopic compositions, we incorporated elements including U, Pb and rare earth elements into calcite through heat‐ and pressure‐induced crystallisation from amorphous calcium carbonate that was precipitated from element‐doped reagent solution. X‐ray absorption spectra showed that U was present as U(VI) in the synthesised calcite, probably with a different local structure from that of aqueous uranyl ions. The uptake rate of U by our calcite was higher in comparison with synthetic calcite of previous studies. Variations of element mass fractions in the calcite were better than 12% 2RSD, mostly within 7%. The 207Pb/206Pb ratio in the calcite showed < 1% variations, while the 238U/206Pb ratio showed 3–24% variations depending on element mass fractions. Using the synthetic calcite as primary RMs, we could date a natural calcite RM, WC‐1, with analytical uncertainty as low as < 3%. The method presented can be useful to produce calcite with controlled and homogeneous element mass fractions and is a promising alternative to natural calcite RMs for U‐Pb geochronology. 相似文献
86.
Yusuke Sawaki Takeshi Ohno Yusuke Fukushi Tsuyoshi Komiya Tomoko Ishikawa Takafumi Hirata Shigenori Maruyama 《Gondwana Research》2008,14(1-2):134
The Precambrian/Cambrian (PC/C) boundary is one of the most important intervals for the evolution of life. However, the scarcity of well-preserved outcrops across the boundary leaves an obstacle in decoding surface environmental changes and patterns of biological evolution.In south China, strata through the PC/C boundary are almost continuously exposed and contain many fossils, suitable for study of environmental and biological change across the PC/C boundary. We undertook deep drilling at four sites in the Three Gorges area to obtain continuous and fresh samples without surface alteration and oxidation. 87Sr/86Sr ratios of the fresh carbonate rocks, selected based on microscopic observation and geochemical signatures of Mn/Sr and Rb/Sr ratios, aluminum and silica contents, and δ13C and δ18O values, were measured with multiple collector-inductively coupled plasma–mass spectrometric techniques.The chemostratigraphy of 87Sr/86Sr ratios of the drilled samples displays a smooth curve and a large positive anomaly just below the PC/C boundary between the upper part of Baimatuo Member of the Dengying Formation and the lower part of the Yanjiahe Formation. The combination of chemostratigraphies of δ13C and 87Sr/86Sr indicates that the 87Sr/86Sr excursions preceded the δ13C negative excursion, and suggests that global regression or formation of the Gondwana supercontinent, possibly together with a high atmospheric pCO2, caused biological depression. 相似文献
87.
Cumulative Benioff strain-release, modified Omori's law and transient behaviour of rocks 总被引:1,自引:1,他引:1
Irreversible thermodynamic theories with internal state variables can be used to derive a general constitutive law for both transient and steady-state behaviours of rocks. This constitutive law can represent the concepts of damage and damage evolution in either the fibre-bundle model or continuum damage mechanics. We have previously proposed an empirically based constitutive law for both the transient and steady-state behaviours of rocks ultimately derived from laboratory experimental data. We show here that this law is concordant with the general constitutive law derived from irreversible thermodynamic theories, and that the relaxation modulus has a temporal power–law that depends on a structural fractal property of rocks. Our constitutive law predicts forms for the cumulative Benioff strain-release for precursory seismic activations and the modified Omori's laws of aftershocks, both aspects of the temporal fractal properties of seismicity. These seismic properties can also be derived by the fibre-bundle model or continuum damage mechanics. Our model suggests that these time-scale invariant processes of seismicity may be regulated by the fractal structures of crustal rocks. 相似文献
88.
Yusuke Seto Daisuke Hamane Takaya Nagai Kiyoshi Fujino 《Physics and Chemistry of Minerals》2008,35(4):223-229
We report on high-pressure and high-temperature experiments involving carbonates and silicates at 30–80 GPa and 1,600–3,200 K,
corresponding to depths within the Earth of approximately 800–2,200 km. The experiments are intended to represent the decomposition
process of carbonates contained within oceanic plates subducted into the lower mantle. In basaltic composition, CaCO3 (calcite and aragonite), the major carbonate phase in marine sediments, is altered into MgCO3 (magnesite) via reactions with Mg-bearing silicates under conditions that are 200–300°C colder than the mantle geotherm.
With increasing temperature and pressure, the magnesite decomposes into an assemblage of CO2 + perovskite via reactions with SiO2. Magnesite is not the only host phase for subducted carbon—solid CO2 also carries carbon in the lower mantle. Furthermore, CO2 itself breaks down to diamond and oxygen under geotherm conditions over 70 GPa, which might imply a possible mechanism for
diamond formation in the lower mantle. 相似文献
89.
Yusuke Sawaki Mathieu Moussavou Tomohiko Sato Kazue Suzuki Cédric Ligna Hisashi Asanuma Shuhei Sakata Hideyuki Obayashi Takafumi Hirata Amboise Edou-Minko 《地学前缘(英文版)》2017,8(2):397-407
The Francevillian Group in Gabonese Republic was recently established as a typical sedimentary sequence for the Paleoproterozoic.However,its age is rather poorly constrained,mainly based on Rb-Sr and Nd-Sm datings.This study reports new zircon data obtained from Chaillu massif and N'goutou complex,which constrain the protolith age of the basement orthogneisses and the igneous age of an intrusive granite,respectively.Most zircons from the orthogneisses are blue and exhibit oscillatory zoning in cathode-luminescence images.Zircons with lower common lead abundances tend to be distributed close to the concordia curve.Two age clusters around 2860 Ma and 2910 Ma are found in zircons plotted on the concordia curve.Based on the Th/U ratios of zircons,these ages correspond to the protolith ages of the orthogneisses,and the zircons are not metamorphic in origin.Syenites and granites were collected from the N'goutou complex that intrudes into the FA and FB units of the Francevillian Group.The granitoids exhibit chemical composition of A-type granite affinity.Half of zircons separated from the granite are non-luminous,and the remaining half exhibit obscure internal textures under cathode-luminescence observation.All zircon grains contain significant amounts of common lead;the lead isotopic variability is probably attributed to the mixing of two components in the zircons.The zircon radiogenic ~(207)Pb/~(206)Pb ratio is 0.13707 ± 0.0010.corresponding to a ~(207)Pb/~(206)Pb age of 2191 ± 13 Ma.This constrains the minimum depositional age of the FA and FB units.Furthermore,the FB unit consists of manganese-rich carbonate rocks and organic carbon-rich black shales with macroscopic fossils.Based on our age constraints,these organisms appeared in the study area just after the last Paleoproterozoic Snowball Earth event,in concert with global scale oxidation event encompassing the Snowball Earth. 相似文献
90.
Manabu Nishizawa Hiroki Yamamoto Subaru Tsuruoka Yusuke Sawaki Yoshiaki Kon Tsuyoshi Komiya Takafumi Hirata 《Geochimica et cosmochimica acta》2010,74(9):2760-8899
The redox state of Precambrian shallow seas has been linked with material cycle and evolution of the photosynthesis-based ecosystem. Iron is a redox-sensitive element and exists as a soluble Fe(II) species or insoluble Fe(III) species on Earth’s surface. Previous studies have shown that the iron isotopic ratio of marine sedimentary minerals is useful for understanding the ocean redox state, although the redox state of the Archean shallow sea is poorly known. This is partly because the conventional bulk isotope analytical technique has often been used, wherein the iron isotopic record may be dampened by the presence of isotopically different iron-bearing minerals within the same sample. Here we report a microscale iron isotopic ratio of individual pyrite grains in shallow marine stromatolitic carbonates over geological time using a newly developed, near-infrared femtosecond laser ablation multicollector ICP-MS technique (NIR-fs-LA-MC-ICP-MS).We have determined that the grain-scale iron isotopic distribution of pyrite from coeval samples shows a bimodal (2.7 and 2.3 Ga) or unimodal pattern (2.9, 2.6, and 0.7 Ga). In particular, pyrite from the 2.7 Ga Fortescue Group shows a unique bimodal distribution with highly positive (+1.0‰ defined as Type 1) and negative δ56Fe values (−1.8‰ defined as Type 2). Type 1 and 2 pyrites occasionally occur within different siliceous layers in the same rock specimen. Layer-scale iron isotopic heterogeneity indicates that the iron isotopic ratios of the two types of pyrite are not homogenized by diagenesis after deposition. Some cubic pyrites have a core with a positive δ56Fe value (1‰) and a rim with a crustal δ56Fe value (0‰). The observed isotopic zoning suggests that the positive δ56Fe value is a primary signature at the time of stromatolite formation, while secondary pyrite precipitated during diagenesis.The positive δ56Fe value of Type 1 and the large iron isotopic difference between Type 1 and 2 (2.8‰.) suggest partial Fe(II) oxidation in the 2.7-Ga shallow sea, i.e., pyritization of 56Fe-enriched ferric oxyhydroxide (Type 1) and 56Fe depleted Fe2+aq in seawater (Type 2). Type 2 pyrite was probably not produced by microbial iron redox cycling during diagenesis because this scenario requires a higher abundance of pyrite with δ56Fe of 0‰ than of −1.8‰. Consequently, the degree of Fe(II) oxidation in the 2.7-Ga shallow sea can be estimated by a Fe2+aq steady-state model. The model calculation shows that half the Fe2+aq influx was oxidized in the seawater. This implies that O2 produced by photosynthesis would have been completely consumed by oxidation of the Fe2+aq influx. Grain-scale iron isotopic distribution of pyrite could be a useful index for reconstructing the redox state of the Archean shallow sea. 相似文献