全文获取类型
收费全文 | 59篇 |
免费 | 1篇 |
国内免费 | 2篇 |
专业分类
测绘学 | 1篇 |
地球物理 | 13篇 |
地质学 | 22篇 |
海洋学 | 5篇 |
天文学 | 17篇 |
综合类 | 3篇 |
自然地理 | 1篇 |
出版年
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 5篇 |
2019年 | 2篇 |
2018年 | 4篇 |
2017年 | 1篇 |
2016年 | 3篇 |
2015年 | 1篇 |
2014年 | 2篇 |
2013年 | 3篇 |
2012年 | 4篇 |
2011年 | 2篇 |
2010年 | 7篇 |
2009年 | 3篇 |
2008年 | 3篇 |
2007年 | 2篇 |
2006年 | 1篇 |
2005年 | 7篇 |
2004年 | 1篇 |
2003年 | 2篇 |
2002年 | 3篇 |
1998年 | 1篇 |
1996年 | 1篇 |
1992年 | 1篇 |
排序方式: 共有62条查询结果,搜索用时 15 毫秒
41.
Lunar soil characterization consortium analyses: Pyroxene and maturity estimates derived from Clementine image data 总被引:1,自引:0,他引:1
The mineralogy of a planetary surface is a diagnostic product of its formation and geologic evolution. Global assessment of lunar mineralogy at high spatial resolution has been a long standing goal of lunar exploration. Currently, the only global data available for such study is multispectral imagery from the Clementine mission. We use the detailed compositional, petrographic, and spectroscopic data of lunar soils produced by the Lunar Soil Characterization Consortium to explore the use of multispectral imaging as a diagnostic tool. We compare several statistically optimized formulations of links between spectral and mineral parameters and apply them to Clementine UV-VIS data. The most reliable results are for estimations of pyroxene abundance and maturity parameters (agglutinate abundance, Is/FeO). Estimations of different pyroxene composition (low-Ca versus high-Ca) appear good in a relative sense, but absolute values are limited by residual wavelength dependent Clementine photometric calibrations. Since the signal-to-noise of Clementine multispectral data is good at the 1-km scale, almost any combination of parameters that capture inherent spectral variance can provide spatially coherent maps, although the parameters may not actually be directly related to composition. Clementine estimates are useful for identifying scientific or exploration targets for imaging spectrometer sensors of the next generation that are specifically designed to characterize mineralogy. 相似文献
42.
In the coastal ecosystems of the Black Sea, macrophytobenthos and, in particular, the association of Cystoseira crinite, C. barbata, Cladostephus verticillatus, and Corallina mediterranea, with its thick vegetative canopy(VC), is the key contributor to primary production(PP). Though the vertical structure of the canopy, formed by the algal association, is of principal importance to the PP level, this subject has been long-neglected by researchers. The goal of our work was to compare vertical structures of the vegetative canopy of Cystoseira brown algae under diverse hydrodynamical conditions of the Crimean Peninsula coast. Samples were collected using the 50 cm×50 cm counting frame at eight stations positioned in shallow(55–60 cm deep) sites of Sevastopol Bay(Crimean Peninsula). Dry weight biomass of the VC was determined for all algae assemblage and for each algal species individually, per horizontal surface unit, at each height( Z). The study shows that: 1) the VC is characterized by unimodal vertical distribution of biomass, with maximum estimate in the lower part, where the biomass increases to 85% of the total biomass; 2) a series of single-peaked curves reliably describes the unimodal distribution of the biomass; thalli of dif ferent age groups are found along the canopy pro?le; and 3) algae found in epiphytic synusia prefer inhabiting the upper part of the VC. The role of environmental factors(seawater turbulence and solar radiation) is discussed in reference to the formation of the vertical structure, made up of the associations of the brown algae Cystoseira. 相似文献
43.
Viktor V. Korokhin Yuriy I. Velikodsky Yuriy G. Shkuratov Vadym G. Kaydash Sergey Y. Gerasimenko Nikolai V. Opanasenko Gorden Videen Carle Pieters 《Planetary and Space Science》2010,58(10):1298-1306
Lunar images acquired at non-zero phase angles show brightness variations caused by both albedo heterogeneities and local topographic slopes of the surface. To distinguish between these two factors, altimetry measurements or photoclinometry data can be used. The distinction is especially important for imagery of phase-function parameters of the Moon. The imagery is a new tool that can be used to study structural anomalies of the lunar surface. To illustrate the removal of the topographic effects from photometric images, we used Earth-based telescopic observations, altimetry measurements carried out with the Kaguya (JAXA) LALT instrument, and a new photoclinometry technique that includes analysis of several images of the same scenes acquired at different phase angles. Using this technique we have mapped the longitudinal component of lunar topography slopes (the component measured along the lines of constant latitude). We have found good correlations when comparing our map with the corresponding data from Kaguya altimetry. The removal of the topographic surface properties allows for the study of the phase-function parameters of the lunar surface, not only for flat mare regions, but for highlands as well. 相似文献
44.
The effects of various types of topography on the shadow-hiding effect and multiple scattering in particulate surfaces are studied. Two bounding cases were examined: (1) the characteristic scale of the topography is much larger than the surface particle size, and (2) the characteristic scale of the topography is comparable to the surface particle size. A Monte Carlo ray-tracing method (i.e., geometric optics approximation) was used to simulate light scattering. The computer modeling shows that rocky topographies generated by randomly distributed stones over a flat surface reveal much steeper phase curves than surface with random topography generated from Gaussian statistics of heights and slopes. This is because rocks may have surface slopes greater than 90°. Consideration of rocky topography is important for interpreting rover observations. We show the roughness parameter in the Hapke model to be slightly underestimated for bright planetary surfaces, as the model neglects multiple scattering on large-scale topographies. The multiple scattering effect also explains the weak spectral dependences of the roughness parameter in Hapke's model found by some authors. Multiple scattering between different parts of a rough surface suppresses the effect of shadowing, thus the effects produced by increases in albedo on the photometric behavior of a surface can be compensated for with the proper decreases in surface roughness. This defines an effective (photometric) roughness for a surface. The interchangeability of albedo and roughness is shown to be possible with fairly high accuracy for large-scale random topography. For planetary surfaces that have a hierarchically arranged large-scale random topography, predictions made with the Hapke model can significantly differ from real values of roughness. Particulate media with surface borders complicated by Gaussian or clumpy random topographies with characteristic scale comparable to the particle size reveal different photometric behaviors in comparison with particulate surfaces that are flat or the scale of their topographies is much larger than the particle size. 相似文献
45.
46.
Multispectral polarimetry as a tool to investigate texture and chemistry of lunar regolith particles
Yuriy Shkuratov Nikolay Opanasenko Yevgen Grynko Viktor Korokhin Gorden Videen Urs Mall 《Icarus》2007,187(2):406-416
We report results of telescope polarimetric imaging of the Moon with a CCD LineScan Camera at large phase angles, near 88°. This allows measurements of the polarization degree with an absolute accuracy better than 0.3% and detection of features with polarization contrast as small as 0.1%. The measurements are carried out in two spectral bands centered near 0.65 and 0.42 μm. We suggest characterizing the lunar regolith with the parameter a(Pmax)A, where Pmax,A, and a are the degree of maximum polarization, albedo, and the parameter describing the linear regression of the correlation Pmax-A. The parameter bears significant information on the particle characteristic size and packing density of the lunar regolith. We also suggest characterizing the lunar regolith with color-ratio images obtained with a polarization filter at large phase angles. We here consider the color-ratios C||(0.65/0.42 μm) and C⊥(0.65/0.42 μm). Using light scattering model calculations we show that the color-ratio images obtained with a polarization filter at large phase angles suggest a new tool to study the lunar surface. In particular, it turns out that the color-ratios C||(0.65/0.42 μm) and C⊥(0.65/0.42 μm) are sensitive to somewhat different thicknesses of the surfaces of regolith particles. We consider the applicability of the Hubble Space Telescope, the Very Large Telescope (ESO), and a spacecraft on a lunar polar orbit for polarimetric observations of the lunar surface. 相似文献
47.
Yuriy Reshetyuk 《ISPRS Journal of Photogrammetry and Remote Sensing》2010,65(5):445-456
In recent years, the method of self-calibration widely used in photogrammetry has been found suitable for the estimation of systematic errors in terrestrial laser scanners. Since high correlations can be present between the estimated parameters, ways to reduce them have to be found. This paper presents a unified approach to self-calibration of terrestrial laser scanners, where the parameters in a least-squares adjustment are treated as observations by assigning appropriate weights to them. The higher these weights are the lower the parameter correlations are expected to be. Self-calibration of a pulsed laser scanner Leica Scan Station was performed with the unified approach. The scanner position and orientation were determined during the measurements with the help of a total station, and the point clouds were directly georeferenced. The significant systematic errors were zero error in the laser rangefinder and vertical circle index error. Most parameter correlations were comparatively low. In part, precise knowledge of the horizontal coordinates of the scanner centre helped greatly to achieve low correlation between these parameters and the zero error. The approach was shown to be advantageous to the use of adjustment with stochastic (weighted) inner constraints where the parameter correlations were higher. At the same time, the collimation error could not be estimated reliably due to its high correlation with the scanner azimuth because of a limited vertical distribution of the targets in the calibration field. While this problem can be solved for a scanner with a nearly spherical field-of-view, it will complicate the calibration of scanners with limited vertical field-of-view. Investigations into the influence of precision of the scanner position and levelling on the adjustment results lead to two important findings. First, it is not necessary to level the scanner during the measurements when using the unified approach since the parameter correlations are relatively low anyway. Second, the scanner position has to be known with a precision of about 1 mm in order to get a reliable estimate of the zero error. 相似文献
48.
49.
In this paper, we consider wave propagation in a layered medium. Using the Baker‐Campbell‐Hausdorff series, we expand the logarithm of a propagator matrix in series of frequency. The series coefficients allow us to extend the effective Backus medium for low frequencies. The proposed technique is applied to vertical propagation in a periodically layered and binary medium as well as for a gradient medium. The velocity dispersion equations are derived for these media. We also consider the layered medium with monoclinic anisotropy. We illustrate the accuracy of the proposed method on synthetic and well‐log data. 相似文献
50.