首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   3篇
  国内免费   10篇
测绘学   3篇
大气科学   8篇
地球物理   46篇
地质学   68篇
海洋学   17篇
天文学   46篇
综合类   7篇
自然地理   11篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   7篇
  2013年   5篇
  2012年   8篇
  2011年   13篇
  2010年   13篇
  2009年   21篇
  2008年   11篇
  2007年   13篇
  2006年   10篇
  2005年   11篇
  2004年   7篇
  2003年   10篇
  2002年   8篇
  2001年   10篇
  2000年   5篇
  1999年   12篇
  1998年   6篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有206条查询结果,搜索用时 15 毫秒
11.
The origin of large subsidence in intracratonic basins is still under debate. We propose a new and self‐consistent model for the formation of those basins, where lithospheric shortening/buckling triggers metamorphism and densification of crustal mafic heterogeneities. We use a forward thermo‐mechanical finite element technique to evaluate this mechanism for the typical example of the East Barents Sea basin (EBB) where a very large and compensated subsidence, accommodating an up to 20‐km‐thick sediment succession, is observed. The lower crust in the dynamic model is modelled with petrologic‐consistent densities for a wet mafic gabbroic composition that depend on pressure and temperature taking into account dehydration at high PT conditions. The model successfully explains the main characteristics of the EBB, notably the large anomalous and fast subsidence during the Late Permian–Early Triassic, its present‐day geometry and the absence of a significant gravity anomaly.  相似文献   
12.
13.
鄂霍茨克海的地球物理场与地质构造   总被引:1,自引:0,他引:1  
鄂霍茨克海位于西太平泮边缘海最北部,受欧亚大陆板块和太平洋板块的作用,有十分复杂的地质地球物理特征,鄂霍茨克海不仅有海隆,还有三个著名的盆地,其中的千岛盆地,是研究鄂霍茨克海的一个窗口,本文通过对大量相关资料的二次开发,详细地讨论了鄂霍茨克海的地球物理场特征,沉积特点、热流分及深部结构特点,并对该边缘海的形成演化进行了初步的探讨,我们认为,对鄂霍茨克海研究的结果,将对中国边缘海地质特征的研究起到帮助和借鉴作用。  相似文献   
14.
The paper is concerned with problems of the study of Paleolithic sites in the loess regions of the Russian Plain. It is of great significance to correlate prehistorical settlement with Upper Pleistocene cycles of loess and soil formation — not solely in the reconstruction of paleoenvironments. From the cultural layers at various sites paleontological finds and objects were collected for radiocarbon dating. A complex analysis of archeological objects embedded in the loess-paleosol sequence helps us date Upper Pleistocene loess formation cycles. The data acquired from the investigation of the lithological properties of loess and their modification through time and their dependence on relief characteristics permitted a correlation between the various paleoenvironments and the dust accumulation cycles, which played a decisive role in the selection of the most habitable sites.  相似文献   
15.
All the available historic records of sea level and appropriate weather charts have been used to study storm surges in the northern part of the Sea of Japan. The generation of surges in this area was investigated by means of a two-dimensional numerical model. Computed sea levels were compared with hourly observed residual sea levels in De-Kastri. The agreement between computed and observed storm surges is quite satisfactory. The relative importance of various meteorological parameters and bottom topography in formation of the strong storm surge on 20–21 September 1975 was studied numerically.  相似文献   
16.
A candidate of the Induan-Olenekian boundary stratotype in the Tethyan region   总被引:10,自引:0,他引:10  
The Olenekian Stage was proposed by Kiparisova and Popov[1] based on the type section along the lower reaches of the Olenek River, Siberia. Later research showed that this section con-tains only the Olenikites spiniplicatus Zone of the Upper Olenekian Sta…  相似文献   
17.
Crude oils produced in the North West shelf of Western Australia are highly volatile, a characteristic not shared by most of the Northern Hemisphere crude oils on which internationally accepted toxicity test protocols were developed. Because of this volatility and some other factors, the LC50 and EC50 values obtained from acute toxicity tests will be significantly affected by the changes of toxicant concentration in test solutions during the period of exposure. To address these issues all steps of a standard protocol for crude oil toxicity testing have been revised. A systematic study has been performed on factors which affect petroleum hydrocarbon solubilisation in aqueous systems during test solution preparations. The influence of mixing time, agitation energy and volume/interface ratio on a hydrocarbon concentration in a water-soluble fraction (WSF) was studied for heavy, medium and light crude oils. A study of the sensitivity of marine unicellular algae to WSF of crude oils was conducted with Isochrysis sp., Nannochloropsis-like sp. and Nitzchia closterium. Total concentrations of hydrocarbons dissolved in test solutions were estimated by UV-spectrometry and GC/FID chemical analyses. When the toxicant concentration decreased during the exposure period, the EC50 values derived from initial or final concentrations either underestimate or overestimate toxicity, respectively. Therefore, weighted average concentrations (WAC) calculated for the whole test period were recommended for expressing hydrocarbon concentrations in test solutions of crude oils. Toxicity indices calculated from WAC of total hydrocarbons for different crude oils can be compared regardless of the rates of hydrocarbon loss.  相似文献   
18.
K–Ar ages of the Cenozoic basaltic rocks from the Far East region of Russia (comprising Sikhote-Alin and Sakhalin) are determined to obtain constraints on the tectono-magmatic evolution of the Eurasian margin by comparison with the Japanese Islands, Northeast China, and the formation of the back-arc basin. In the early Tertiary stage (54–26 Ma), the northwestward subduction of the Pacific Plate produced the active continental margin volcanism of Sikhote-Alin and Sakhalin, whereas the rift-type volcanism of Northeast China, inland part of the continent began to develop under a northeast–southwest-trending deep fault system. In the early Neogene (24–17 Ma), a large number of subduction-related volcanic rocks were erupted in connection with the Japan Sea opening. After an inactive interval of the volcanism ∼ 20–13 Ma ago, the late Neogene (12–5 Ma) volcanism of Sikhote-Alin and Sakhalin became distinct from those of the preceding stages and indicated within-plate geochemical features similar to those of Northeast China, in contrast to the Japan Arc which produces island arc volcanism. During the Japan Sea opening, the northeastern Eurasian margin detached and became a continental island arc system, and an integral part of continental eastern Asia comprising Sikhote-Alin, Sakhalin and Northeast China, and the Japan Arc with a back-arc basin. The convergence between the Eurasian Plate, the Pacific Plate and the Indian Plate may have contributed to the Cenozoic tectono-magmatism of the northeastern Eurasian continent.  相似文献   
19.
Dynamical and kinematic properties of Bianchi-II cosmological models with rotation and expansion are investigated. Exact solutions of Einstein field equations are obtained which describe the evolution of a rotating Universe. Exact solutions of null, timelike and spacelike geodesics are constructed. Two new cosmological tests for rotating universes are discussed: cosmological lens effect and cosmological mirror effect.  相似文献   
20.
Rare-earth elements abundance in black shales of the Upper Jurassic (Tithonian Stage)–Lower Cretaceous (Berriassian Stage) Bazhenov Formation is discussed. This formation is the principal oil source rocks of West Siberia. The deposits within the formation can be subdivided into two main marine groups: (a) moderately hemipelagic deposits (clayey-siliceous, including phosphatic and carbonate rocks) and low-density distal clayey turbidites (argillites), both are considered as normal and (b) silty argillites and clayey-silt rocks, which are channel deposits and considered as anomalous. The hemipelagic rocks of normal sections, which are enriched in the rare-earth elements (REE), accumulated under both slow rates of sedimentation (clayey-siliceous rocks) and faster rates of sedimentation (argillites). The channel deposits of anomalous sections, which are impoverished in the REE, accumulated exclusively under fast rates of sedimentation.Within the hemipelagic group the rate of sedimentation of the argillites was faster than of the clayey-siliceous rocks, but the REE concentration in the former rocks (140.4 ppm) is higher than in the latter group (97.4 ppm). The argillites are more than twice enriched in clayey material than clayey-siliceous rocks. It is likely that the clay fraction was the main carrier of REE in these rocks. In the channel group of rocks, the REE abundance in clayey-silt rocks (21.2 ppm) is lower than in the silty argillite (84.6 ppm), in which the clay content is elevated.With respect to redox potential the Bazhenov Formation rocks can be subdivided further into three groups, based on the degree of pyritization index (DOP): (1) the highly reducing clayey-siliceous rocks of normal sections, with high DOP; (2) the substantially reducing argillites and carbonate rocks of normal sections, with intermediate DOP; (3) the moderately reducing rocks of anomalous sections with low DOP. The rocks with the high DOP (group 1) are characterized by ΣLREE/Σ(M+H)REE ratios between 7.37 and 7.5, whereas the rocks with the lower DOP (group 2 and 3) are characterized by ΣLREE/Σ(M+H)REE ratios between 12.8 and 13.5. Negative Ce anomalies are either small or absent in all deposits, which is typical for reducing conditions.Thus, the Bazhenov Formation exemplifies the complex depositional conditions that influence the REE concentration in black shale. However, it is this very complexity that has contributed to the development of six separate depositional models (REE contents in ppm are given in brackets). (1) Phosphatic clayey-siliceous rocks of normal sections (367.95); (2) argillites of normal sections (130.73); (3) clayey-siliceous rocks of normal sections (85.97); (4) carbonate rocks, largely dolomites of normal sections (23.23); (5) silty argillites of anomalous sections (78.7) and (6) clayey-silt rocks of anomalous sections (19.66).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号