首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38868篇
  免费   627篇
  国内免费   241篇
测绘学   754篇
大气科学   2581篇
地球物理   7634篇
地质学   14079篇
海洋学   3546篇
天文学   8720篇
综合类   88篇
自然地理   2334篇
  2022年   257篇
  2021年   441篇
  2020年   500篇
  2019年   577篇
  2018年   1012篇
  2017年   1014篇
  2016年   1080篇
  2015年   583篇
  2014年   1035篇
  2013年   1850篇
  2012年   1191篇
  2011年   1629篇
  2010年   1441篇
  2009年   1798篇
  2008年   1630篇
  2007年   1688篇
  2006年   1556篇
  2005年   1060篇
  2004年   1076篇
  2003年   1112篇
  2002年   997篇
  2001年   868篇
  2000年   797篇
  1999年   723篇
  1998年   715篇
  1997年   723篇
  1996年   588篇
  1995年   572篇
  1994年   501篇
  1993年   453篇
  1992年   409篇
  1991年   424篇
  1990年   437篇
  1989年   391篇
  1988年   369篇
  1987年   400篇
  1986年   415篇
  1985年   508篇
  1984年   546篇
  1983年   542篇
  1982年   496篇
  1981年   455篇
  1980年   430篇
  1979年   409篇
  1978年   375篇
  1977年   385篇
  1976年   344篇
  1975年   353篇
  1974年   341篇
  1973年   371篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
LandStar is a differential global positioning service (DGPS) that provides 24-h real-time positioning for various applications on land, water, and air in North America, Australia, New Zealand, Europe, and Africa. Its focus is on real-time applications requiring a submeter positioning capability such as agriculture, forestry, Geospatial Information Systems (GIS), survey/mapping, and land/vehicular navigation. LandStar uses a Wide Area Network of reference stations to derive DGPS corrections to model the variation of GPS error sources over a large area. These model parameters are used by the Virtual Reference Station processors to calculate standard corrections that are available for all predefined locations in the network. The corrections are transmitted to the user by L-band satellite communication in the standard RTCM SC104 DGPS correction format. This article investigates the performance of the LandStar Mk III system under various operational conditions and assesses its performance in both static and kinematic modes. Four field tests were conducted during 12 months that tested the sysem in clear static and kinematic conditions as well as suboptimal environments associated with low and heavy foliage conditions. Both the accuracy and availability of the system under these conditions is investigated, with an emphasis on whether the above variables are caused by the LandStar system differential corrections, the GPS measurements, or a combination of both. ? 1999 John Wiley & Sons, Inc.  相似文献   
112.
Pen‐and‐ink style geomorphological illustrations render landscape elements critical to the understanding of surface processes within a viewshed and, at their highest levels of execution, represent works of art, being both practical and beautiful. The execution of a pen‐and‐ink composition, however, requires inordinate amounts of time and skill. This article will introduce an algorithm for rendering creases – linework representing visually significant morphological features – at animation speeds, made possible with recent advances in graphics processing unit (GPU) architectures and rendering APIs. Beginning with a preprocessed high‐resolution drainage network model, creases are rendered from selected stream segments if their weighted criteria (slope, flow accumulation, and surface illumination), attenuated by perspective distance from the viewpoint, exceed a threshold. The algorithm thus provides a methodology for crease representation at continuous levels of detail down to the highest resolution of the preprocessed drainage model over a range of surface orientation and illumination conditions. The article also presents an implementation of the crease algorithm with frame rates exceeding those necessary to support animation, supporting the proposition that parallel processing techniques exposed through modern GPU programming environments provide cartographers with a new and inexpensive toolkit for constructing alternative and attractive real‐time animated landscape visualizations for spatial analysis.  相似文献   
113.
The case study of Kanpur demonstrates the use of air photo approach to collect physical data, mainly landuse in central area. The study reveals that very less percentage of vacant land exists in central area for future development. Though this area consist CBD, even then commercial landuse accounts to be only 10% of total area. Selective landuse inventory analysis was carried out for the landuse categories, commercial, industrial and vacant. Reliability of aerial photo-interpretation of over all landuse map found to be 91–95% and each sub-class of landuse reliability for omission and commission error found to be within limits for planning and design purpose.  相似文献   
114.
The earthquake of 6 October 1987 (M = 6.6), which occurred near the Shipunsky Cape, Kamchatka, was the largest crustal event in the vicinity of the main city of Kamchatka — Petropavlovsk-Kamchatsky — during the last three decades. It was followed by numerous aftershocks. This earthquake allowed us to test the effectiveness of the seismic hazard monitoring in Kamchatka, including the seismological, geodetic and hydrogeochemical surveys. The seismic survey provided the location and source nature of the main shock and aftershocks and the seismic environment of the main shock. The geodetic and hydrogeochemical surveys have yielded data on the response to earthquakes of the Earth's surface deformations, water level, and chemical elements concentration in the underground water. As a result, the following data were obtained:

u

  • The earthquake of 6 October had a seismic moment 4–10 E18 Nm, thrust type of faulting and the source volume of 20 × 20 × 10 km3. The maximum intensity was VI–VII (MSK-64 scale) and maximum acceleration 88 cm/s2.
  • Before this event, a relative increase in the number of the upper mantle (depth more than 100 km) moderate magnitude earthquakes during 5 years and a one-year period of seismic quiescence for small shallow earthquakes, were recognized. Significant anomalies in HCO3 and H3BO3 concentrations in the underground waters were observed in the wells a week before the main shock.
  •   相似文献   
    115.
    The topographic effects by Stokes formula are typically considered for a spherical approximation of sea level. For more precise determination of the geoid, sea level is better approximated by an ellipsoid, which justifies the consideration of the ellipsoidal corrections of topographic effects for improved geoid solutions. The aim of this study is to estimate the ellipsoidal effects of the combined topographic correction (direct plus indirect topographic effects) and the downward continuation effect. It is concluded that the ellipsoidal correction to the combined topographic effect on the geoid height is far less than 1 mm. On the contrary, the ellipsoidal correction to the effect of downward continuation of gravity anomaly to sea level may be significant at the 1-cm level in mountainous regions. Nevertheless, if Stokes formula is modified and the integration of gravity anomalies is limited to a cap of a few degrees radius around the computation point, nor this effect is likely to be significant.AcknowledgementsThe author is grateful for constructive remarks by J Ågren and the three reviewers.  相似文献   
    116.
    The Remote Sensing Core Curriculum (RSCC) was initiated in 1993 to meet the demands for a college-level set of resources to enhance the quality of education across national and international campuses. The American Society of Photogrammetry and Remote Sensing adopted the RSCC in 1996 to sustain support of this educational initiative for its membership and collegiate community. A series of volumes, containing lectures, exercises, and data, is being created by expert contributors to address the different technical fields of remote sensing. The RSCC program is designed to operate on the Internet taking full advantage of the World Wide Web (WWW) technology for distance learning. The issues of curriculum development related to the educational setting, with demands on faculty, students, and facilities, is considered to understand the new paradigms for WW-influenced computer-aided learning. The WWW is shown to be especially appropriate for facilitating remote sensing education with requirements for addressing image data sets and multimedia learning tools. The RSCC is located at http://www.umbc.edu/rscc  相似文献   
    117.
     The topographic and atmospheric effects of gravimetric geoid determination by the modified Stokes formula, which combines terrestrial gravity and a global geopotential model, are presented. Special emphasis is given to the zero- and first-degree effects. The normal potential is defined in the traditional way, such that the disturbing potential in the exterior of the masses contains no zero- and first-degree harmonics. In contrast, it is shown that, as a result of the topographic masses, the gravimetric geoid includes such harmonics of the order of several centimetres. In addition, the atmosphere contributes with a zero-degree harmonic of magnitude within 1 cm. Received: 5 November 1999 / Accepted: 22 January 2001  相似文献   
    118.
    119.
    120.
    To begin exploring the underlying mechanisms that couple vegetation to cloud formation processes, we derive the lifting condensation level (LCL) to estimate cumulus cloud base height. Using a fully coupled land–ocean–atmosphere general circulation model (HadCM3LC), we investigate Amazonian forest feedbacks on cloud formation over three geological periods; modern-day (a.d. 1970–1990), the last glacial maximum (LGM; 21 kya), and under a future climate scenario (IS92a; a.d. 2070–2090). Results indicate that for both past and future climate scenarios, LCL is higher relative to modern-day. Statistical analyses indicate that the 800 m increase in LCL during the LGM is related primarily to the drier atmosphere promoted by lower tropical sea surface temperatures. In contrast, the predicted 1,000 m increase in LCL in the future scenario is the result of a large increase in surface temperature and reduced vegetation cover.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号