首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   7篇
  国内免费   4篇
测绘学   2篇
大气科学   7篇
地球物理   50篇
地质学   29篇
海洋学   24篇
天文学   14篇
综合类   2篇
自然地理   13篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   7篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   6篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   7篇
  2009年   11篇
  2008年   9篇
  2007年   12篇
  2006年   4篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   5篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1987年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
排序方式: 共有141条查询结果,搜索用时 31 毫秒
41.
Spatial variability of throughfall (TF) isotopic composition, used as tracer input, influences isotope hydrological applications in forested watersheds. Notwithstanding, identification of the dominant canopy factors and processes that affect the patterns of TF isotopic variability remains ambiguous. Here, we examined the spatio‐temporal variability of TF isotopic composition in a Japanese cypress plantation, in which intensive strip thinning was performed and investigated whether canopy structure at a fine resolution of canopy effect analysis is related to TF isotopic composition and how this is affected by meteorological factors. Canopy openness, as an index of canopy structure, was calculated from hemispherical photographs at different zenith angles. TF samples were collected in a 10 × 10 m experimental plot in both pre‐thinning (from July to November 2010) and post‐thinning (from May 2012 to March 2013) periods. Our results show that thinning resulted in a smaller alteration of input δ18O of gross precipitation, whereas the changes in deuterium excess varied in both directions. Despite the temporal stability of spatial patterns in TF amount, the spatial variability of TF isotopic composition was not temporally stable in both pre‐ and post‐thinning periods. Additionally, after thinning, the isotopic composition of TF was best related to canopy openness calculated at the zenith angle of 7°, exhibiting three different relationships, that is, significantly negative, significantly positive, and nonsignificant. Changes in meteorological factors (wind speed, rainfall intensity, and temperature) were found to affect the relationships between TF δ18O and canopy openness. The observed shifts in the relationships reveal different dominant factors (partial evaporation and the selection), and canopy water flowpaths control such differences. This study provides useful insights into the spatial variability of TF isotopic composition and improves our understanding of the physical processes of interception through canopy passage.  相似文献   
42.
Tsunami deposits preserved in the geological record provide a more comprehensive understanding of their patterns of frequency and intensity over longer timescales; but recognizing tsunami deposits can prove challenging due to post-depositional changes, lack of contrast between the deposits and surrounding sedimentary layers, and differentiating between tsunami and storm deposition. Modern baseline studies address these challenges by providing insight into modern spatial distributions that can be compared with palaeotsunami deposits. This study documents the spatial fingerprint of grain size and foraminifera from Hasunuma Beach and the Kujukuri shelf to provide a basis from which tsunami deposits can be interpreted. At Hasunuma Beach, approximately 50 km east of Tokyo, the spatial distribution of three common proxies (foraminiferal taxonomy, foraminiferal taphonomy and sediment grain size) for tsunami identification were mapped and clustered using Partitioning Around Medoids cluster analysis. Partitioning Around Medoids cluster analysis objectively discriminated two coastal zones corresponding to onshore and offshore sample locations. Results show that onshore samples are characterized by coarser grain sizes (medium to coarse sand) and higher abundances of Pararotalia nipponica (27 to 63%) than offshore samples, which are characterized by finer grain sizes (fine to medium sand), lower abundances of Pararotalia nipponica (2 to 19%) and Ammonia parkinsoniana (0 to 10%), higher abundances of planktonics (15 to 58%) and species with fragile tests including Uvigerinella glabra. When compared to grain-size and foraminiferal taxonomy, foraminiferal taphonomy; i.e. surface condition of foraminifera, a proxy not commonly used to identify tsunami deposits, was most effective in discriminating modern coastal zones (identified supratidal, intertidal and offshore environments) and determining sediment provenance for tsunami deposits at Kujukuri. This modern baseline study assists the interpretation of tsunami deposits in the geological record because it provides a basis for sediment provenance to be determined.  相似文献   
43.
Medium-scale traveling ionospheric disturbances (MSTID) are wave-like perturbations of the ionospheric plasma with wavelengths of several hundred kilometres and velocities of several hundred metres per second. MSTID is one of the most common ionospheric phenomena that generally induce the perturbations of ionospheric total electron content (TEC) by ∼1016 electron/m2, which corresponds to ∼54 ns (16.2 cm) delay at GPS L1 signal. In the past decade, several new characteristics on MSTIDs have been revealed by the TEC observations using the dense GPS receiver network in Japan. In this paper, we provide a short review of these new observations and summarize the morphological characteristics of MSTIDs in Japan.  相似文献   
44.
45.
Characteristic time scales relevant to the accumulation of planetesimals in a gaseous nebula are examined and the accumulation toward the planets is simulated by numerically solving a growth equation for a mass distribution function. The eccentricity and inclination of planetesimals are assumed to be determined by a balance between excitation due to mutual gravitational scattering and dissipation due to gas drag. Two kinds of mass motion in the radial direction, i.e., diffusion due to mutual scattering and inward flow due to gas drag, are both taken into account. The diffusion is shown to be effective in later stages with a result of accelerating the accumulation. As to the coalescent collision cross section, the usual formula for a binary encounter in a free space is used but the effect of tidal disruption which increases substantially the cross section is taken into account. Numerical results show that the gravitational enhancement factor (i.e., the so-called “Safronov number”), contained in the cross section formula, always takes a value of the order of unity but the accumulation proceeds relatively rapidly owing to the effects of radial diffusion and tidal disruption. That is, a proto-Earth, a proto-Jupiter, and a proto-Saturn with masses of 1×1027 g are formed in 5×106, 1×107, and 1.6×108 years, respectively. Also, a tentative numerical computation for the Neptune formation shows that a proto-Neptune with the same mass requires a long accumulation time, 4.6×109 years. Finally, the other effects which are expected to reduce the above growth times further are discussed.  相似文献   
46.
We describe the detailed sedimentary characteristics of a tsunami deposit associated with the 2011 Tohoku‐oki tsunami in Hasunuma, a site on the Kujukuri coastal plain, Japan. The thick tsunami deposit was limited to within 350 m from the coastline whereas the inundation area extended about 1 km from the coastline. The tsunami deposit was sampled by excavation at 29 locations along three transects and studied using peels, soft‐X imaging and grain‐size analysis. The deposit covers the pre‐existing soil and reached a maximum measured thickness of 35 cm. It consists mainly of well‐sorted medium to fine sand. On the basis of sedimentary structures and changes in grain size, we divided the tsunami deposit into several sedimentary units, which may correspond to multiple inundation flows. The numbers of units and their sedimentary features vary among the three transects, despite the similar topography. This variation implies a considerable influence of local effects such as elevation, vegetation, microtopography, and distance from footpaths, on the tsunami‐related sedimentation.  相似文献   
47.
Tsutomu  Nakazawa  Katsumi  Ueno    Xiangdong  Wang 《Island Arc》2009,18(1):94-107
Huge carbonate rock bodies ranging in age from the Visean (Middle Mississippian/Early Carboniferous) to the Changhsingian (Lopingian/Late Permian) overlie a basaltic basement in the Changning–Menglian Belt, West Yunnan, Southwest China. These carbonates lack intercalations of terrigenous siliciclastic material throughout. These lines of evidence indicate that they formed upon an isolated and continuously subsiding mid-oceanic island (or plateau), probably of hotspot origin. The carbonates are grouped into a shallow-water carbonate platform facies regime observed in the Yutangzhai section and a relatively deep-water carbonate slope facies regime typically represented in the Longdong section. These two facies regimes developed contemporaneously as parts of a carbonate depositional system on and around a mid-oceanic volcanic edifice. The carbonate platform is subdivided into four facies, including platform-margin, shoal, lagoon, and peritidal facies. Along the measured Yutangzhai section of the platform facies regime, the vertical facies succession from the platform-margin facies into inner-platform facies such as the shoal and lagoon facies is recognized. This facies succession is explained as resulting from the progradation of the carbonate platform. Worm tubes occur as a main reef builder in platform-margin facies of the Mississippian. Their occurrence as major constituents in a high-wave-energy reef is peculiar to Carboniferous reef distributions of the world. The occurrences of other reef- and/or mound-building organisms and peritidal dolo-mudstone are almost consistent in timing with those of Panthalassan counterparts such as the Akiyoshi and Omi limestones of Japan, and probably exhibit the worldwide trend.  相似文献   
48.
This paper investigates the ionospheric and geomagnetic responses during the 28 March 2005 and 14 May 2005 Sumatran earthquakes using GPS and magnetometer stations located in the near zone of the epicenters. These events occurred during low solar and geomagnetic activity. TEC oscillations with periods of 5–10 min were observed about 10–24 min after the earthquakes and have horizontal propagation velocities of 922–1259 m/s. Ionospheric disturbances were observed at GPS stations located to the northeast of the epicenters, while no significant disturbances were seen relatively east and south of the epicenters. The magnetic field measurements show rapid fluctuations of 4–5 s shortly after the earthquake, followed by a Pc5 pulsation of 4.8 min about 11 min after the event. The correlation between the ionospheric and geomagnetic responses shows a good agreement in the period and time lag of the peak disturbance arrival, i.e. about 11–13 min after the earthquake.  相似文献   
49.
The rate of recession of Niagara Falls (Horseshoe and American Falls) in northeastern North America has been documented since the 19th century; it shows a decreasing trend from ca. 1 m y− 1 a century ago to ca. 0.1 m y− 1 at present. Reduction of the flow volume in the Niagara River due to diversion into bypassing hydroelectric schemes has often been taken to be the factor responsible, but other factors such as changes in the waterfall shape could play a role and call for a quantitative study. Here, we examine the effect of physical factors on the historically varying recession rates of Niagara Falls, using an empirical equation which has previously been proposed based on a non-dimensional multiparametric model which incorporates flow volume, waterfall shape and bedrock strength. The changes in recession rates of Niagara Falls in the last century are successfully modeled by this empirical equation; these changes are caused by variations in flow volume and lip length. This result supports the validity of the empirical equation for waterfalls in rivers carrying little transported sediment. Our analysis also suggests that the decrease in the recession rate of Horseshoe Falls is related to both artificial reduction in river discharge and natural increase in waterfall lip length, whereas that of American Falls is solely due to the reduction in flow volume.  相似文献   
50.
Linear and nonlinear responses of ten well-type tide gauge stations on the Japan Sea coast of central Japan were estimated by in situ measurements. We poured water into the well or drained water from the well by using a pump to make an artificial water level difference between the outer sea and the well, then measured the recovery of water level in the well. At three tide gauge stations, Awashima, Iwafune, and Himekawa, the sea-level change of the outer sea is transmitted to the tide well instantaneously. However, at seven tide gauge stations, Nezugaseki, Ryotsu, Ogi, Teradomari, Banjin, Kujiranami, and Naoetsu, the sea-level change of the outer sea is not always transmitted to the tide well instantaneously. At these stations, the recorded tsunami waveforms are not assured to follow the actual tsunami waveforms. Tsunami waveforms from the Niigataken Chuetsu-oki Earthquake in 2007 recorded at these stations were corrected by using the measured tide gauge responses. The corrected amplitudes of the first and second waves were larger than the uncorrected ones, and the corrected peaks are a few minutes earlier than the uncorrected ones at Banjin, Kujiranami, and Ogi. At Banjin, the correction was significant; the corrected amplitudes of the first and second upward motion are +103 cm and +114 cm, respectively, while the uncorrected amplitudes were +96 cm and +88 cm. At other tide gauge stations, the differences between the uncorrected and corrected tsunami waveforms were insignificant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号