全文获取类型
收费全文 | 27318篇 |
免费 | 698篇 |
国内免费 | 1611篇 |
专业分类
测绘学 | 1587篇 |
大气科学 | 2594篇 |
地球物理 | 5246篇 |
地质学 | 13058篇 |
海洋学 | 1409篇 |
天文学 | 1763篇 |
综合类 | 2467篇 |
自然地理 | 1503篇 |
出版年
2024年 | 16篇 |
2023年 | 40篇 |
2022年 | 94篇 |
2021年 | 150篇 |
2020年 | 96篇 |
2019年 | 111篇 |
2018年 | 4847篇 |
2017年 | 4124篇 |
2016年 | 2680篇 |
2015年 | 330篇 |
2014年 | 233篇 |
2013年 | 153篇 |
2012年 | 1140篇 |
2011年 | 2888篇 |
2010年 | 2183篇 |
2009年 | 2488篇 |
2008年 | 2054篇 |
2007年 | 2498篇 |
2006年 | 212篇 |
2005年 | 308篇 |
2004年 | 486篇 |
2003年 | 500篇 |
2002年 | 343篇 |
2001年 | 135篇 |
2000年 | 163篇 |
1999年 | 143篇 |
1998年 | 157篇 |
1997年 | 145篇 |
1996年 | 125篇 |
1995年 | 103篇 |
1994年 | 123篇 |
1993年 | 105篇 |
1992年 | 72篇 |
1991年 | 52篇 |
1990年 | 56篇 |
1989年 | 46篇 |
1988年 | 46篇 |
1987年 | 24篇 |
1986年 | 23篇 |
1985年 | 17篇 |
1984年 | 13篇 |
1983年 | 13篇 |
1982年 | 14篇 |
1981年 | 30篇 |
1980年 | 22篇 |
1979年 | 4篇 |
1978年 | 4篇 |
1977年 | 2篇 |
1976年 | 10篇 |
1973年 | 2篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
利用吉林省45个气象站1970-2014年逐日的最高、最低气温资料,分析吉林省最高、最低气温不对称变化在年、季尺度上的时空演变特征。采用经验模态分解法(EMD)分解年、季最高、最低气温序列,分析变化趋势。结果表明:近45年年平均最高、最低气温均呈增加趋势,且最低气温增幅是最高气温的两倍。四季的最高、最低气温变化形式与年变化一致;不同地区之间最高气温的增幅差异不大,最低气温增幅存在一定区别,东部最低气温增幅小于中、西部。相对稳定的增温区出现在西部和中部,不同季节的增温幅度不同,春、夏要强于秋、冬。经验模态分解(EMD)结果显示吉林省年平均最高、最低气温均为增加趋势,而春、冬季中最高气温趋势分量的倾向率与原始序列不同,为负值。夏、秋季中最高气温及四季中最低气温趋势分量序列与原始数据序列的倾向率一致,均为正值但大小存在差异。 相似文献
102.
Carbon emissions—and hence fossil fuel combustion—must decline rapidly if warming is to be held below 1.5 or 2 °C. Yet fossil fuels are so deeply entrenched in the broader economy that a rapid transition poses the challenge of significant transitional disruption. Fossil fuels must be phased out even as access to energy services for basic needs and for economic development expands, particularly in developing countries. Nations, communities, and workers that are economically dependent on fossil fuel extraction will need to find a new foundation for livelihoods and revenue. These challenges are surmountable. In principle, societies could undertake a decarbonization transition in which they anticipate the transitional disruption, and cooperate and contribute fairly to minimize and alleviate it. Indeed, if societies do not work to avoid that disruption, a decarbonization transition may not be possible at all. Too many people may conclude they will suffer undue hardship, and thus undermine the political consensus required to undertake an ambitious transition. The principles and framework laid out here are offered as a contribution to understanding the nature of the potential impacts of a transition, principles for equitably sharing the costs of avoiding them, and guidance for prioritizing which fossil resources can still be extracted. 相似文献
103.
Fabien Gibert Juan Cuesta Jun-Ichi Yano Nicolas Arnault Pierre H. Flamant 《Boundary-Layer Meteorology》2007,125(3):553-573
We question the correlation between vertical velocity (w) on the one hand and the occurrence of convective plumes in lidar reflectivity (i.e. range corrected backscatter signal Pz
2) and depolarization ratio (Δ) on the other hand in the convective boundary layer (CBL). Thermal vertical motion is directly
investigated using vertical velocities measured by a ground-based Doppler lidar operating at 2 μm. This lidar provides also
simultaneous measurements of lidar reflectivity. In addition, a second lidar 200 m away provides reflectivities at 0.53 and
1 μm and depolarization ratio at 0.53 μm. The time series from the two lidars are analyzed in terms of linear correlation
coefficient (ρ). The main result is that the plume-like structures provided by lidar reflectivity within the CBL as well as the CBL height
are not a clear signature of updrafts. It is shown that the lidar reflectivity within the CBL is frequently anti-correlated
(ρ (w, Pz
2 )) with the vertical velocity. On the contrary, the correlation coefficient between the depolarization ratio and the vertical
velocity ρ (w, Δ ) is always positive, showing that the depolarization ratio is a fair tracer of updrafts. The importance of relative humidity
on the correlation coefficient is discussed.
An erratum to this article can be found at 相似文献
104.
地面加密自动站资料同化和数值模拟 总被引:2,自引:5,他引:2
采用美国多部门研制的WRF模式及其四维变分同化系统,对2008年5月长江中下游地区一次强对流暴雨天气过程进行了数值模拟试验;并分别将质量控制前和质量控制后的华东地区地面加密自动站资料加入模式进行四维变分同化试验,与实况进行了对比。结果表明:模拟试验能较好的模拟此次降水过程;而采用四维变分同化经质量控制后的地面加密资料,模式效果最好,使降水预报在降水落区和降水量上都获得较为明显的改善;但质量控制前四维同化改善效果不明显。这说明地面资料的质量控制很重要,它能去伪存真。有效地利用地面加密自动站资料,能使资料的加入与模式更协调,从而得到了最佳的模拟效果。 相似文献
105.
Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to different environmental conditions. However, most land surface models currently prescribe rooting profiles as a function only of vegetation type, with no consideration of the surroundings. In this study, a dynamic rooting scheme, which describes root growth as a compromise between water and nitrogen availability, was incorporated into CLM4.5 with carbon–nitrogen(CN) interactions(CLM4.5-CN) to investigate the effects of a dynamic root distribution on eco-hydrological modeling. Two paired numerical simulations were conducted for the Tapajos National Forest km83(BRSa3) site and the Amazon, one using CLM4.5-CN without the dynamic rooting scheme and the other including the proposed scheme. Simulations for the BRSa3 site showed that inclusion of the dynamic rooting scheme increased the amplitudes and peak values of diurnal gross primary production(GPP) and latent heat flux(LE) for the dry season, and improved the carbon(C) and water cycle modeling by reducing the RMSE of GPP by 0.4 g C m~(-2)d~(-1), net ecosystem exchange by 1.96 g C m~(-2)d~(-1), LE by 5.0 W m~(-2), and soil moisture by 0.03 m~3m~(-3), at the seasonal scale, compared with eddy flux measurements, while having little impact during the wet season. For the Amazon, regional analysis also revealed that vegetation responses(including GPP and LE) to seasonal drought and the severe drought of 2005 were better captured with the dynamic rooting scheme incorporated. 相似文献
106.
Gabriel Mititelu 《Celestial Mechanics and Dynamical Astronomy》2009,103(4):327-342
A practical and important problem encountered during the atmospheric re-entry phase is to determine analytical solutions for
the space vehicle dynamical equations of motion. The author proposes new solutions for the equations of trajectory and flight-path
angle of the space vehicle during the re-entry phase in Earth’s atmosphere. Explicit analytical solutions for the aerodynamic
equations of motion can be effectively applied to investigate and control the rocket flight characteristics. Setting the initial
conditions for the speed, re-entering flight-path angle, altitude, atmosphere density, lift and drag coefficients, the nonlinear
differential equations of motion are linearized by a proper choice of the re-entry range angles. After integration, the solutions
are expressed with the Exponential Integral, and Generalized Exponential Integral functions. Theoretical frameworks for proposed
solutions as well as, several numerical examples, are presented. 相似文献
107.
108.
We investigate an overlooked mechanism—coastal upwelling—for sea surface temperature (SST) cooling in the western side of the mean location of the Pacific warm pool (WSWP: 5°S–5°N, 140°E–150°E) prior to El Niño onset. We analyze various observed data such as the TRIangle Trans-Ocean buoy Network (TRITON) moored buoy data, Conductivity-Temperature-Depth (CTD) data, satellite data and a hindcast experiment output by a high-resolution ocean general circulation model (OGCM). We focus on the precondition of the 2002/03 El Niño event, for which many datasets are available. Relatively cool water upwelled along the north coast of Papua New Guinea (PNG) during December 2001, prior to the onset of the 2002/03 El Niño event, and then spread out over a wider area to the northeast. Simultaneously, strong west-northerly surface winds occur along the north coast. Heat budget analysis of TRITON buoy data in the WSWP reveals that negative zonal heat advection due to eastward current is the main factor for cooling the mixed layer in the WSWP in contrast to the warming effect of the surface heat flux during the period. This cooling requires a source of colder water to the west. Similar analysis of OGCM outputs also suggests that the upwelled relatively cool water along the PNG north coast, and its northeastward extension to the equatorial region, contributes to cooling of the surface water over the WSWP mainly via negative zonal heat advection. Similar mechanisms are confirmed also for the 1982/83 and 1997/98 El Niño events by analyses of OGCM outputs and historical SST data. The low SST in the WSWP generated a positive zonal SST gradient together with high SST east of the WSWP. It may contribute to enhancement of the westerly surface wind in this region, leading to the onset of the 2002/03 El Niño event. 相似文献
109.
R Shirani Faradonbeh D Jahed Armaghani M. Z. Abd Majid M. MD Tahir B. Ramesh Murlidhar M. Monjezi H. M. Wong 《International Journal of Environmental Science and Technology》2016,13(6):1453-1464
Blasting is a widely used technique for rock fragmentation in opencast mines and tunneling projects. Ground vibration is one of the most environmental effects produced by blasting operation. Therefore, the proper prediction of blast-induced ground vibrations is essential to identify safety area of blasting. This paper presents a predictive model based on gene expression programming (GEP) for estimating ground vibration produced by blasting operations conducted in a granite quarry, Malaysia. To achieve this aim, a total number of 102 blasting operations were investigated and relevant blasting parameters were measured. Furthermore, the most influential parameters on ground vibration, i.e., burden-to-spacing ratio, hole depth, stemming, powder factor, maximum charge per delay, and the distance from the blast face were considered and utilized to construct the GEP model. In order to show the capability of GEP model in estimating ground vibration, nonlinear multiple regression (NLMR) technique was also performed using the same datasets. The results demonstrated that the proposed model is able to predict blast-induced ground vibration more accurately than other developed technique. Coefficient of determination values of 0.914 and 0.874 for training and testing datasets of GEP model, respectively show superiority of this model in predicting ground vibration, while these values were obtained as 0.829 and 0.790 for NLMR model. 相似文献
110.
In order to maintain the thermal stability of very wide highway embankments in permafrost regions, the thermal isolation
material EPS is often utilized. To examine the effects of this insulation on the China National Highway (G214),
two-dimensional finite element analysis of temperature fields was conducted for varying widths of highway embankments
with and without EPS insulation. The numerical results show that in permafrost regions the effect of thermal aggregation on
asphalt pavement is more obvious when highway embankments are wider, and, specifically for the G214 highway, the insulation
should be more than 25 cm thick for 24-m-wide embankments. However, considering other factors such as the structural
rationality of the embankments and high engineering costs, it might not be feasible to install EPS insulation in
24-m-wide embankments of the G214 highway when the height of the embankments is less than 3.65 m. 相似文献