首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   0篇
大气科学   14篇
地球物理   17篇
地质学   43篇
海洋学   4篇
天文学   4篇
自然地理   1篇
  2021年   5篇
  2020年   2篇
  2019年   1篇
  2018年   11篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   7篇
  2013年   6篇
  2012年   6篇
  2011年   2篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   5篇
  2004年   1篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1992年   1篇
  1990年   1篇
  1980年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
11.
On the basis of U–Pb, Rb–Sr and Sm–Nd isotopic data, it is shown that formation of uranium mineralization in the Paleoproterozoic Salla-Koulajarvinsky belt (Northern Karelia) was a long-lasting mult-stage process that developed over more than 1 Ga: from the Paleoproterozoic to the Paleozoic. The first stage, 1.75 Ga ago, corresponds to the Svekofennian metamorphic event—regional albitization. The process was dated by the Rb–Sr (isochronic age of albitites is 1754 ± 39 Ma) and U–Pb methods (the age of rutile is 1756 ± 8 Ma). At this stage, with a lower temperature limit of 400–450°C, conditions were favorable for the mobilization and migration of uranium, but not for its deposition in minerals. The second stage, 1.62 Ga ago, was a time of alteration of rocks at the regressive stage of the Svekofennian metamorphic event, when carbonate and chlorite rocks formed after albitites. The age of this stage was estimated as 1627 ± 42 Ma according to ThO2, UO2, and PbO contents in uraninite. Probably, the deposition of uraninite took place at this stage at temperature not higher than 300–350°C. The final, third stage, 385 Ma ago, corresponds to the Paleozoic tectonic activation and formation of Caledonian alkaline intrusions. Uranium minerals were probably redeposited at this stage; the U–Pb age of brannerite is 385 ± 2 Ma.  相似文献   
12.
13.
Geology of Ore Deposits - The distribution of index minerals of the hydrothermal arsenide process of the formation of Ni‒Co–As (±U–Ag), Co–S–As...  相似文献   
14.
Data on gold ore objects in the Strelna Greenstone Belt in the southeastern Kola Peninsula are presented in the paper. The studied Vorgovy and Sergozero ore occurrences are localized in the zone of tectonic contact of the Neoarchean complexes making up the greenstone belt and the volcanic–sedimentary sequences of the Paleoproterozoic Imandra–Varzuga Zone. The Vorgovy gold occurrence is related to stockwork of carbonate–quartz veins and veinlets hosted in a biotite gneiss transformed into chlorite–sericite–quartz metasomatic rock with pyrrhotite–arsenopyrite dissemination. The Sergozero occurrence is localized in amphibolites corresponding to komatiitic and tholeiitic basalts hosted in biotite gneiss (metapelite). Mineralization is confined to the zone of tectonized contact between komatiitic and tholeiitic basalts, where it is controlled by a strip of metasomatic biotite–calcite rock with gersdorffite–arsenopyrite dissemination. The native gold grains medium to high in fineness are up to 0.1 mm in size and mainly localized at the contact of arsenopyrite and gersdorffite with gangue minerals. Gold mineralization is of superimposed character, and, as indicated by isotopic geochronology, was formed at the retrograde stage of the Svecofennian regional metamorphism. Comparison of ore occurrences localized in the Strelna Greenstone Belt with gold deposits in greenstone belts of the western Fennoscandian Shield and the Superior Province in Canada allows us to suggest a high perspective of the entire Strelna Belt for gold.  相似文献   
15.
Relative variations in the critical frequency of the ionospheric F, region are considered as one of the main sources of information about the characteristics of plasma inhomogeneities in the region of the main ionization maximum and as a substantial factor responsible for the statistics of the decameter signal parameters on radio paths with different lengths. The functions defined on finite intervals are also used in statistical modeling in addition to the available methods. Such a consideration made it possible to remove a restriction, peculiar to previous models, in the form of the requirement that the fourth statistical invariant—excess— should be positive. This makes the generalized statistical model more universal, which is of special importance for high4atitude radio paths. The specified mo del more adequately corresponds to the experimental data, which are characterized by finite intervals where the quantities are measured.  相似文献   
16.
We describe one of possible mechanisms of the formation of anomalies of the cloud field over the North Atlantic and Europe by using, as an example, the processes developed in the Atlantic-European sector during the natural synoptic season in the spring of 1996. It is shown that the anomalies of the cloud field can be classified with the use of the index of the North Atlantic oscillation and the latitude of the center of the Azorean maximum. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   
17.
The Zhaima gold–sulfide deposit is located in the northwestern part of the West Kalba gold belt in eastern Kazakhstan. The mineralization is hosted in Lower Carboniferous volcanic and carbonate rocks formed under conditions of marginal-sea and island-arc volcanic activity. The paper considers the mineralogy and geochemistry of primary gold–sulfide ore and Au-bearing weathering crusts. Au-bearing arsenopyrite–pyrite mineralization formed during only one productive stage. Disseminated, stringer–disseminated, and massive rocks are enriched in Ti, Cr, V, Cu, and Ni, which correspond to the mafic profile of basement. The main ores minerals are represented by finely acicular arsenopyrite containing Au (up to few tens of ppm) and cubic and pentagonal dodecahedral pyrite with sporadic submicroscopic inclusions of native gold. The sulfur isotopic composition of sulfides is close to that of the meteoritic standard (δ34S =–0.2 to +0.2). The 40Ar/39Ar age of three sericite samples from ore veinlets corresponds to the Early Permian: 279 ± 3.3, 275.6 ± 2.9, and 272.2 ± 2.9 Ma. The mantle source of sulfur, ore geochemistry, and spatial compatibility of mineralization with basic dikes allow us to speak about the existence of deep fluid–magmatic systems apparently conjugate with the Tarim plume.  相似文献   
18.
The problem of the rapid depletion and saturation of the Earth’s outer radiation belt with energetic electrons is one of the central problems in the physics of the magnetosphere. The precipitation into the atmosphere and the escape of electrons from the magnetosphere are competing reasons for the depletion of the radiation belt. Long-term measurements of energetic electron precipitation (EEP) in the atmosphere in the experiment of the Lebedev Physical Institute (LPI) can be used to study the relative role of these phenomena. High fluence values of relativistic electrons in the outer belt is a necessary condition for EEP observation; however, the relation of the EEP rate to the condition of the belt is ambiguous, which is shown by the example of observations in 1994.  相似文献   
19.
During the prolonged and deep minimum of solar activity between cycles 23 and 24, an unusual behavior of the heliospheric characteristics and increased intensity of galactic cosmic rays (GCRs) near the Earth’s orbit were observed. The maximum of the current solar cycle 24 is lower than the previous one, and the decline in solar and, therefore, heliospheric activity is expected to continue in the next cycle. In these conditions, it is important for an understanding of the process of GCR modulation in the heliosphere, as well as for applied purposes (evaluation of the radiation safety of planned space flights, etc.), to estimate quantitatively the possible GCR characteristics near the Earth in the upcoming solar minimum (~2019–2020). Our estimation is based on the prediction of the heliospheric characteristics that are important for cosmic ray modulation, as well as on numeric calculations of GCR intensity. Additionally, we consider the distribution of the intensity and other GCR characteristics in the heliosphere and discuss the intercycle variations in the GCR characteristics that are integral for the whole heliosphere (total energy, mean energy, and charge).  相似文献   
20.
Solutions to the problem of the point source field in a spherically layered medium are analyzed. For a three-layer waveguide model, a solution in the form of the Watson integral was used. A consideration of the singularities in the plane of the integration variable made it possible to represent the integral as a superposition of three waves. Two of them are connected with the interaction of the primary spherical wave with the lower convex and upper concave interfaces. The third wave is connected with the alternate action with both interfaces. The fourth wave is caused by the interaction between the primary wave and random inhomogeneities of the external medium (the ionosphere). Here, simulation was carried out based on Green equations. The considered unique data of flight measurements of the point source field strength indicate the efficiency of simulating the transhorizon propagation of decameter waves based on the superposition of all four aforesaid wave packets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号