首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274559篇
  免费   7011篇
  国内免费   6201篇
测绘学   7787篇
大气科学   21710篇
地球物理   57360篇
地质学   97707篇
海洋学   23823篇
天文学   57873篇
综合类   1991篇
自然地理   19520篇
  2021年   2880篇
  2020年   3154篇
  2019年   3475篇
  2018年   5094篇
  2017年   4800篇
  2016年   6822篇
  2015年   4841篇
  2014年   7535篇
  2013年   14789篇
  2012年   7491篇
  2011年   9378篇
  2010年   8406篇
  2009年   10853篇
  2008年   9507篇
  2007年   9160篇
  2006年   10142篇
  2005年   8233篇
  2004年   8047篇
  2003年   7565篇
  2002年   7155篇
  2001年   6365篇
  2000年   6215篇
  1999年   5546篇
  1998年   5475篇
  1997年   5281篇
  1996年   4893篇
  1995年   4640篇
  1994年   4293篇
  1993年   3992篇
  1992年   3736篇
  1991年   3657篇
  1990年   3807篇
  1989年   3594篇
  1988年   3354篇
  1987年   3882篇
  1986年   3433篇
  1985年   4238篇
  1984年   4749篇
  1983年   4416篇
  1982年   4323篇
  1981年   3931篇
  1980年   3642篇
  1979年   3513篇
  1978年   3488篇
  1977年   3281篇
  1976年   3044篇
  1975年   2958篇
  1974年   2914篇
  1973年   3079篇
  1972年   2025篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
201.
Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c.  120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c.  88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c.  116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap ( c.  27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone.  相似文献   
202.
203.
204.
Monocrystalline quartz inclusions in garnet and omphacite from various eclogite samples from the Lanterman Range (Northern Victoria Land, Antarctica) have been investigated by cathodoluminescence (CL), Raman spectroscopy and imaging, and in situ X‐ray (XR) microdiffraction using the synchrotron. A few inclusions, with a clear‐to‐opalescent lustre, show ‘anomalous’ Raman spectra characterized by weak α‐quartz modes, the broadening of the main α‐quartz peak at 465 cm?1, and additional vibrations at 480–485, 520–523 and 608 cm?1. CL and Raman imaging indicate that this ‘anomalous’α‐quartz occurs as relicts within ordinary α‐quartz, and that it was preserved in the internal parts of small quartz inclusions. XR diffraction circular patterns display irregular and broad α‐quartz spots, some of which show an anomalous d‐spacing tightening of ~2%. They also show some very weak, hazy clouds that have d‐spacing compatible with coesite but not with α‐quartz. Raman spectrometry and XR microdiffraction characterize the anomalies with respect to α‐quartz as (i) a pressure‐induced disordering and incipient amorphization, mainly revealed by the 480–485 and 608‐cm?1 Raman bands, together with (ii) a lattice densification, evidenced by d‐spacing tightening; (iii) the cryptic development of coesite, 520–523 cm?1 being the main Raman peak of coesite and (iv) Brazil micro‐twinning. This ‘anomalous’α‐quartz represents the first example of pressure‐induced incipient amorphization of a metastable phase in a crustal rock. This issue is really surprising because pressure‐induced amorphization of metastable α‐quartz, observed in impactites and known to occur between 15 and 32 GPa during ultrahigh‐pressure (UHP) experiments at room temperature, is in principle irrelevant under normal geological P–T conditions. A shock (due to a seism?) or a local overpressure at the inclusion scale (due to expansion mismatch between quartz and its host mineral) seem the only geological mechanisms that can produce such incipient amorphization in crustal rocks. This discovery throws new light on the modality of the quartz‐coesite transition and on the pressure regimes (non‐lithostatic v. lithostatic) during high‐pressure/UHP metamorphism. In particular, incipient amorphization of quartz could favour the quartz‐coesite transition, or allow the growth of metastable coesite, as already experimentally observed.  相似文献   
205.
206.
Using one-minute cadence vector magnetograms from Big Bear Solar Observatory (BBSO), we analyze the temporal behavior of derived longitudinal electric currents associated with two flares on July 26, 2002. One of the events is an M1.0 flare which occurred in active region NOAA 10044, while the other is an M8.7 flare in the adjacent region 10039. Rapid changes of magnetic fields in the form of flux emergence are found to be associated with both of these events. However, the temporal behavior of electric currents are very different. For the M1.0 flare, the longitudinal electric current density drops rapidly near the flaring neutral line; while for the M8.7 flare, the current density rapidly increases, confirming the picture of the current-carrying flux emergence. We offer a possible explanation for such a difference: magnetic reconnection at different heights for the two events, near the photosphere for the M1.0 flare, and higher up for the M8.7 flare.  相似文献   
207.
Bedrock fission‐track analysis, high‐resolution petrography and heavy mineral analyses of sediments are used to investigate the relationships between erosion and tectonics in the Western Alps. Along the Aosta Valley cross‐section, exhumation rates based on fission‐track data are higher in the fault‐bounded western block than in the eastern block (0.4–1.5 vs. 0.1–0.3 mm yr−1). Erosion rates based on the analysis of bed‐load in the Dora Baltea drainage display the same pattern and have similar magnitudes in the relative sub‐basins (0.4–0.7 vs. 0.04–0.08 mm yr−1). Results highlight that climate, relief and lithology are not the controlling factors of erosion in the Western Alps. The main driving force behind erosion is instead tectonics that causes the differential upward motion of crustal blocks.  相似文献   
208.
We describe a procedure for the numerical modelling of astronomical interferometers, with particular relevance to far-infrared and submillimetre wavelengths. The scheme is based on identifying a set of modes that carry power from the sky to the detector. The procedure is extremely general, and can be used to model scalar or vector fields, in any state of coherence and polarization, the only limitation being that the propagation of a coherent field through the system be described by an integral transform, a constraint that is in practise always met.
We present simulations of ideal, multimode two-dimensional interferometers, and show that the modal theory reproduces the correct behaviour of both Michelson and Fizeau interferometers. We calculate simulated visibility data for a multimode bolometric Michelson interferometer, with a synthesized source, and produce a dirty map, recovering the original source with the usual artefacts associated with interferometers.  相似文献   
209.
210.
We study the self-consistent, linear response of a galactic disc to vertical perturbations, as induced, say, by a tidal interaction. We calculate the self-gravitational potential corresponding to a non-axisymmetric, self-consistent density response of the disc using the Green's function method. The response potential is shown to oppose the perturbation potential because the self-gravity of the disc resists the imposed potential, and this resistance is stronger in the inner parts of a galactic disc. For the   m = 1  azimuthal wavenumber, the disc response opposes the imposed perturbation up to a radius that spans a range of 4–6 disc scalelengths, so that the disc shows a net warp only beyond this region. This physically explains the well known but so far unexplained observation that warps typically set in beyond this range of radii. We show that the inclusion of a dark matter halo in the calculation only marginally changes (by ∼10 per cent) the radius for the onset of warps. For perturbations with higher azimuthal wavenumbers, the net signature of the vertical perturbations can only be seen at larger radii – for example, beyond 7 exponential disc scalelengths for   m = 10  . Also, for the high- m cases, the magnitude of the negative disc response due to the disc self-gravity is much smaller. This is shown to result in corrugations of the mid-plane density, which explains the puzzling scalloping with   m = 10  detected in H  i in the outermost regions ∼30 kpc in the Galaxy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号