首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   8篇
大气科学   2篇
地球物理   27篇
地质学   17篇
海洋学   3篇
天文学   10篇
综合类   2篇
自然地理   3篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2010年   6篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1975年   1篇
排序方式: 共有64条查询结果,搜索用时 484 毫秒
41.
Abstract In situ observations of the zircon-reidite transition in ZrSiO4 were carried out using a multianvil high-pressure apparatus and synchrotron radiation. The phase boundary between zircon and reidite was determined to be P (GPa) = 8.5+0.0017×(T-1200) (K) for temperatures between 1100–1900 K. When subducted slabs, including igneous rocks and sediments, descend into the upper mantle, the zircon in the subducted slab transforms into reidite at pressures of about 9 GPa, corresponding to a depth of 270 km. Reidite found in an upper Eocene impact ejecta layer in marine sediments is thought to have been transformed from zircon by a shock event. The peak pressure generated by the shock event in this occurrence is estimated to be higher than 8 GPa.Editorial responsibility: J. Hoefs  相似文献   
42.
A coronal condensation was observed simultaneously with Fexiv 5303, Fex 6374, Fe xi 7892, and H filtergraphs. The size and shape of the condensation in 5303 are different from those in other filtergrams. H filtergrams taken around the eclipse time show that a small transient prominence exists in close proximity to the condensation core and behaves like a post-flare loop system, though the appearance is quite different and no flare-report exists. A small-scale energetic phenomenon seems to have occurred at the top of magnetic loops.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 285.  相似文献   
43.
A large number of tar globules with sessile organisms were collected from the surface tows taken with larval nets in the waters around the Ryukyu Islands during November and December, 1973. Bryozoans (one species), tubeworms (Serpulidae,Janua (Dexiospira) foraminosa (Moore &Bush)) and goose barnacles (Lepas pectinata Spengler,L. anatifera Linné) were the most important species of sessile animals found on these tar globules. Sinking of tar globules byLepas of middle or large size was suggested from the differences in their specific gravity.  相似文献   
44.
One-dimensional hydrodynamic simulations are performed in order to examine the influence of initial atmospheric structures on the dynamics of spicules. This is an extended version of our previous spicule theory: spicules are produced by the shock wave (MHD slow mode shock) which originates from a bright point appearance (sudden pressure increase) at the network in the photosphere or in the low chromosphere. Simulation results well reproduce the observational facts that spicules are absent over plages and long under coronal holes. The physical reason is that the growth of a shock wave during its propagation through the chromosphere is small in plage regions and large in coronal hole regions, since the growth of a shock is determined by the density ratio ( h 0/ c ) between the bright point and the corona. An empirical formula H max ( h 0/ c )0.46 is obtained, where H max is the maximum height of spicules above the transition region. The cross-section of the vertical magnetic flux tube is assumed to be constant in the numerical simulations.  相似文献   
45.
46.
We conducted hydrographic observations in 2002 to investigate the anticyclonic eddy that emerges every summer in Funka Bay, Hokkaido, Japan, and elucidate dynamical structure and wind-driven upwelling within the eddy. The anticyclonic eddy has a vertical scale of 32 m and is characterized by a strong baroclinic flow and a sharp pycnocline with a concave isopycnal structure. The sharp pycnocline occurs below a warm and relatively low-salinity water termed summer Funka Bay water (FS), which is formed by heating from solar radiation and dilution from river discharge in summertime Funka Bay. Flow of the anticyclonic eddy rotates as a rigid body at each layer, and the horizontal scale and rotation period of the eddy in the surface layer are about 15 km and 2.2 days, respectively. The dynamical balance of the anticyclonic eddy is well explained by the gradient flow balance. The contribution of centrifugal force to the gradient flow balance is about 27%. Therefore, the effect of the nonlinear term associated with centrifugal force cannot be neglected in considering the dynamics of the anticyclonic eddy in summertime Funka Bay. In addition, upwelling of subsurface water was observed in the surface layer of the central part of the eddy. The formation mechanism of this upwelling is consistent with interaction between horizontal uniform wind and the eddy. This upwelling is driven by upward Ekman pumping velocity related to the horizontal divergence of Ekman transport. In summertime Funka Bay, there are two wind effects that affect the anticyclonic eddy: a decay effect of the upwelling of subsurface water resulting from horizontal uniform wind (mainly northwesterly wind), and a maintenance or spin-up effect of horizontal non-uniform wind (mainly southerly–southeasterly seasonal wind) with negative wind stress curl.  相似文献   
47.
Abstract. The MITI Nankai Trough wells were drilled for exploration of methane-hydrate-bearing sediments in association with seismic inferred bottom simulating reflectors (BSRs). In this project, log data showed low velocity compressional-wave (P-wave) layers below methane-hydrate-bearing formations. Dipole shear sonic acoustic tools (DSI) could not acquire accurate compres-sional velocity in this zone, thus it was not possible to accurately correlate between logging, VSP and surface seismic profiles.
Small amount of gas was presumed to cause the problem in obtaining the low velocity P-wave data. VSP interval velocity data was used to assess the DSI inferred low-velocity layer, which showed lower values than the velocity of the drilling muds. Synthetic seismogram was created by VSP-compensated velocity to compare against corridor stack of VSP. As a result, the depths above and below the methane-hydrate-bearing interval were correlated with synthetic seismograms and reflectivity events on the VSP profiles. By using this correlation technique, distribution of methane-hydrate-bearing formations and free-gas-bearing formations can be determined.  相似文献   
48.
Numerous non‐ductile reinforced concrete (RC) buildings with little or no shear reinforcement in beam‐column joints can be found in regions of moderate seismicity. To strengthen such substandard beam‐column joints, this study proposes a method in which RC wing walls are installed beside existing columns, which overcomes the lack of realistic strengthening methods for congested connections in RC buildings. The proposed strengthening mechanism improves the joint moment capacity by utilizing tension and compression acting on the beam–wing wall boundaries; thus, brittle joint hinging failure is prevented. Three 3/4‐scale RC exterior beam‐column joint specimens without shear reinforcement, two of which were strengthened by installing wing walls with different strengthening elements, were fabricated and tested. The test results verified the effectiveness of the proposed strengthening method and the applicability of this method to seismically substandard beam‐column joints. © 2017 The Authors. Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd.  相似文献   
49.
Although we know that rainfall interception (the rain caught, stored, and evaporated from aboveground vegetative surfaces and ground litter) is affected by rain and throughfall drop size, what was unknown until now is the relative proportion of each throughfall type (free throughfall, splash throughfall, canopy drip) beneath coniferous and broadleaved trees. Based on a multinational data set of >120 million throughfall drops, we found that the type, number, and volume of throughfall drops are different between coniferous and broadleaved tree species, leaf states, and timing within rain events. Compared with leafed broadleaved trees, conifers had a lower percentage of canopy drip (51% vs. 69% with respect to total throughfall volume) and slightly smaller diameter splash throughfall and canopy drip. Canopy drip from leafless broadleaved trees consisted of fewer and smaller diameter drops (D50_DR, 50th cumulative drop volume percentile for canopy drip, of 2.24 mm) than leafed broadleaved trees (D50_DR of 4.32 mm). Canopy drip was much larger in diameter under woody drip points (D50_DR of 5.92 mm) than leafed broadleaved trees. Based on throughfall volume, the percentage of canopy drip was significantly different between conifers, leafed broadleaved trees, leafless broadleaved trees, and woody surface drip points (p ranged from <0.001 to 0.005). These findings are partly attributable to differences in canopy structure and plant surface characteristics between plant functional types and canopy state (leaf, leafless), among other factors. Hence, our results demonstrating the importance of drop‐size‐dependent partitioning between coniferous and broadleaved tree species could be useful to those requiring more detailed information on throughfall fluxes to the forest floor.  相似文献   
50.
The present study systematically investigates shock-induced alteration of organic simulants of planetary bodies (OSPBs) as a function of peak shock pressure and temperature by impact experiments. Our results show that the composition and structure of OSPBs are unchanged upon impacts at peak pressures ≤~5 GPa and temperatures ≤~350 °C. On the other hand, these are dramatically changed upon impacts at >7–8 GPa and > ~400 °C, through loss of hydrogen-related bonds and concurrent carbonization, regardless of the initial compositions of OSPBs. Compared with previous results on static heating of organic matter, we suggest that shock-induced alteration cannot be distinguished from static heating only by Raman and infrared spectroscopy. Our experimental results would provide a proxy indicator for assessing degree of shock-induced alteration of organic matter contained in carbonaceous chondrites. We suggest that a remote-sensing signature of the 3.3–3.6 μm absorption due to hydrogen-related bonds on the surface of small bodies would be a promising indicator for the presence of less-thermally-altered (i.e., <350 °C) organic matter there, which will be a target for landing to collect primordial samples in sample-return spacecraft missions, such as Hayabusa2 and OSIRIS-REx.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号