首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   12篇
  国内免费   1篇
大气科学   4篇
地球物理   43篇
地质学   37篇
海洋学   29篇
天文学   12篇
自然地理   5篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   9篇
  2009年   5篇
  2008年   8篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1990年   5篇
  1989年   7篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1968年   1篇
排序方式: 共有130条查询结果,搜索用时 203 毫秒
81.
Lower Cretaceous lacustrine oil shales are widely distributed in southeastern Mongolia. Due to the high organic carbon content of oil shale, many geochemical studies and petroleum exploration have been conducted. Although most of the oil shales are considered to be Early Cretaceous in age, a recent study reveals that some were deposited in the Middle Jurassic. The present study aims at establishing depositional ages and characteristics of the Jurassic and Cretaceous lacustrine deposits in Mongolia. The Lower Cretaceous Shinekhudag Formation is about 250 m thick and composed of alternating beds of shale and dolomite. The Middle Jurassic Eedemt Formation is about 150 m thick and composed of alternating beds of shale, dolomitic marl, and siltstone. The alternations of shale and dolomite in both formations were formed by lake level changes, reflecting precipitation changes. Shales were deposited in the center of a deep lake during highstand, while dolomites were formed by primary precipitation during lowstand. Based on the radiometric age dating, the Shinekhudag Formation was deposited between 123.8 ±2.0 Ma and 118.5 ±0.9 Ma of the early Aptian. The Eedemt Formation was deposited at around 165–158 Ma of Callovian–Oxfordian. The calculated sedimentation rate of the Shinekhudag Formation is between 4.7 ±2.6 cm/ky and 10.0 ±7.6 cm/ky. Shales in the Shinekhudag Formation show micrometer‐scale lamination, consisting of algal organic matter and detrital clay mineral couplets. Given the average thickness of micro‐laminae and calculated sedimentation rate, the micro‐lamination is most likely of varve origin. Both Middle–Upper Jurassic and Lower Cretaceous lacustrine oil shales were deposited in intracontinental basins in the paleo‐Asian continent. Tectonic processes and basin evolution basically controlled the deposition of these oil shales. In addition, enhanced precipitation under humid climate during the early Aptian and the Callovian–Oxfordian was another key factor inducing the widespread oil shale deposition in Mongolia.  相似文献   
82.
Sea level rise is generally attributed to increased ocean heat content and increased rates glacier and ice melt. However, human transformations of Earth’s surface have impacted water exchange between land, atmosphere, and ocean, ultimately affecting global sea level variations. Impoundment of water in reservoirs and artificial lakes has reduced the outflow of water to the sea, while river runoff has increased due to groundwater mining, wetland and endorheic lake storage losses, and deforestation. In addition, climate-driven changes in land water stores can have a large impact on global sea level variations over decadal timescales. Here, we review each component of negative and positive land water contribution separately in order to highlight and understand recent changes in land water contribution to sea level variations.  相似文献   
83.
During the Asian monsoon period, intense precipitation commonly occurs for an extended period in accompaniment with a reduction in solar radiation. This suggests that wet surface evapotranspiration is an important contributor to the total evapotranspiration. Therefore, investigating evapotranspiration over a wet canopy surface is critical to achieve a better understanding of water and energy cycles in Asia. In this study, we estimated surface resistances under wet conditions in a mixed forest influenced by the East Asian monsoon system. We showed that the surface resistance had a non‐negligible magnitude of about 30 sm?1 even under wet conditions. We also found that the ratio between the actual and potential evapotranspiration depended on the friction velocity regardless of the time of day. Our analyses suggest that this dependency is tightly related to the underestimation of turbulent fluxes by the eddy‐covariance system under wet surface conditions. Together, our findings suggest that the wet surface resistance, although small, should be considered in simulating evapotranspiration because the forest ecosystem is strongly coupled to the overlying atmosphere. This could significantly improve the shortcomings of evapotranspiration measurement and modeling in Asian forest canopies influenced by the monsoon system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
84.
Field surveys on atmospheric deposition and stream water chemistry were conducted in an evergreen forest in northeastern Thailand characterized by a tropical savanna climate with distinct dry and wet seasons. Atmospheric deposition of ion constituents by throughfall and stemflow was shown to increase in the beginning and end of the wet season, reflecting the precipitation pattern. The pH and electrical conductivity of stream water increased with alkalinity and base cation concentrations due to mineralization of organic matter by the first rain and retention of anions in soil during the start of the wet season. After initial alkalinization, the pH and alkalinity declined rapidly with the highest SO42? concentration displayed in the middle towards the end of the wet season. The magnitude of peaks in SO42? concentration (13.5–60.6 μmolc/L) reflects deposition during the first 2 months of the wet season (March and April) in respective years (60.8–170 molc/ha). Release of SO42? with H+, which is retained in soil during the early wet season, may cause acidification later in the season. The deposition and concentration of SO42? declined over 6 years. However, the pH of stream water declined with increasing concentrations of SO42? and other major ions. The release of materials accumulated in the ecosystem was facilitated by the decrease in SO42? concentration/deposition and increased precipitation in the middle–late wet season. The retention‐release cycle of SO42? largely contributed to both seasonal and interannual variations in stream water chemistry in the tropical savanna climate studied.  相似文献   
85.
We have developed a new system for real-time observation of tsunamis and crustal deformation using a seafloor pressure sensor, an array of seafloor transponders and a Precise Point Positioning (PPP ) system on a buoy. The seafloor pressure sensor and the PPP system detect tsunamis, and the pressure sensor and the transponder array measure crustal deformation. The system is designed to be capable of detecting tsunami and vertical crustal deformation of ±8 m with a resolution of less than 5 mm. A noteworthy innovation in our system is its resistance to disturbance by strong ocean currents. Seismogenic zones near Japan lie in areas of strong currents like the Kuroshio, which reaches speeds of approximately 5.5 kt (2.8 m/s) around the Nankai Trough. Our techniques include slack mooring and new acoustic transmission methods using double pulses for sending tsunami data. The slack ratio can be specified for the environment of the deployment location. We can adjust slack ratios, rope lengths, anchor weights and buoy sizes to control the ability of the buoy system to maintain freeboard. The measured pressure data is converted to time difference of a double pulse and this simple method is effective to save battery to transmit data. The time difference of the double pulse has error due to move of the buoy and fluctuation of the seawater environment. We set a wire-end station 1,000 m beneath the buoy to minimize the error. The crustal deformation data is measured by acoustic ranging between the buoy and six transponders on the seafloor. All pressure and crustal deformation data are sent to land station in real-time using iridium communication.  相似文献   
86.
In analyses of compositional data, it is important to select a suitable unchanging component as a reference to detect the behavior of a single variable in isolation. This paper introduces two tests for detecting the unchanging component, based on a new approach that utilizes the coefficient of variation of component ratios. That is, the coefficient of variation of a compositional ratio is subject to change when the unchanging component is switched between the denominator and numerator, and the coefficient of variation tends to be small when the unchanging component occurs as the denominator against any arbitrary components (Test 1). In addition, the ratio of the component pair that gives the lowest coefficient of variation is most likely to represent the two unchanging components (Test 2). However, Tests 1 and 2 are not necessary and sufficient conditions for uniquely finding the unchanging component. To verify the effectiveness of the tests, 500 artificial datasets were analyzed and the results suggest that the tests are able to identify the unchanging component, although Test 1 underperforms when the dataset includes a component with skewness greater than 0.5, and Test 2 fails when the dataset includes components with a correlation coefficient greater than 0.75. These defects can be overcome by interpreting the two test results in a complementary manner. The proposed tests provide powerful yet simple criteria for identifying the unchanging component in compositional data; however, the reliability of this approach needs to be assessed in further studies.  相似文献   
87.
88.
Precambrian microbial fossils show carbonaceous cellular structure, which often resemble in shape and size cyanobacteria and other prokaryotes. Morphological taxonomy of these minute, simple, and more or less degraded fossils is, however, often not enough to determine their precise phylogenetic positions. Here we report the results of micro-FTIR spectroscopic analyses of well-preserved microfossils in 850 Ma and 1900 Ma stromatolites, together with those of 8 species of extant prokaryotes and 5 of eukaryotes for comparison. These Proterozoic fossils have low CH3/CH2 absorbance ratios (R3/2 < 0.5) of aliphatic CH moieties, suggesting selective preservation of long, straight, aliphatic carbon chains probably derived from bacterial membrane lipids. All the observed R3/2 values of coccoids, filaments and amorphous organic matter resemble lipid fractions of extant Bacteria including cyanobacteria, but not Archaea. The results indicate that Proterozoic microfossils belong to Bacteria, which is consistent with the cyanobacterial origin inferred from morphology. Moreover, the R3/2 value of fossilized cell would reflect chemical composition of its precursor membrane lipid, thus could be a useful new tracer for distinguishing Archaea, Bacteria and possibly Eucarya for fossilized and extant microorganisms.  相似文献   
89.
Collapse of masonry structures during an earthquake is analyzed using the three-dimensional distinct element method (3D-DEM) code developed by the first author. The DEM is a numerical analysis technique, in which positions of elements are calculated by solving equations of motion step by step. Both individual and group behavior can be simulated. The structure is modeled as an assembly of distinct elements connected by virtual springs and dashpots, where elements come into contact. First, the validity of the developed 3D-DEM code is confirmed by comparing analytical results with static experimental results of masonry walls. Second, failure process of masonry buildings due to earthquake is investigated using DEM. Effects of reinforcing methods are also examined. Finally, injury to human bodies in the collapsing masonry buildings is also calculated. Assuming that occupants lie down on the floor, two types of casualty criteria are introduced and assessed.  相似文献   
90.
The water and energy exchanges in forests form one of the most important hydro‐meteorological systems. There have been far fewer investigations of the water and heat exchange in high latitude forests than of those in warm, humid regions. There have been few observations of this system in Siberia for an entire growing season, including the snowmelt and leaf‐fall seasons. In this study, the characteristics of the energy and water budgets in an eastern Siberian larch forest were investigated from the snowmelt season to the leaf‐fall season. The latent heat flux was strongly affected by the transpiration activity of the larch trees and increased quickly as the larch stand began to foliate. The sensible heat dropped at that time, although the net all‐wave radiation increased. Consequently, the seasonal variation in the Bowen ratio was clearly ‘U’‐shaped, and the minimum value (1·0) occurred in June and July. The Bowen ratio was very high (10–25) in early spring, just before leaf opening. The canopy resistance for a big leaf model far exceeded the aerodynamic resistance and fluctuated over a much wider range. The canopy resistance was strongly restricted by the saturation deficit, and its minimum value was 100 s m?1 (10 mm s?1 in conductance). This minimum canopy resistance is higher than values obtained for forests in warm, humid regions, but is similar to those measured in other boreal conifer forests. It has been suggested that the senescence of leaves also affects the canopy resistance, which was higher in the leaf‐fall season than in the foliated season. The mean evapotranspiration rate from 21 April 1998 to 7 September 1998 was 1·16 mm day?1, and the maximum rate, 2·9 mm day?1, occurred at the beginning of July. For the growing season from 1 June to 31 August, this rate was 1·5 mm day?1. The total evapotranspiration from the forest (151 mm) exceeded the amount of precipitation (106 mm) and was equal to 73% of the total water input (211 mm), including the snow water equivalent. The understory evapotranspiration reached 35% of the total evapotranspiration, and the interception evaporation was 15% of the gross precipitation. The understory evapotranspiration was high and the interception evaporation was low because the canopy was sparse and the leaf area index was low. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号