首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   3篇
  国内免费   2篇
测绘学   3篇
大气科学   1篇
地球物理   28篇
地质学   25篇
海洋学   64篇
天文学   17篇
综合类   1篇
自然地理   2篇
  2022年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   1篇
  2001年   4篇
  2000年   7篇
  1998年   2篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   6篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   7篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有141条查询结果,搜索用时 265 毫秒
91.
The Sanbagawa metamorphic terrain of the study area is divided into two units, the Shirakura and Sejiri units. The metamorphic thermal structure is interpreted on the basis of the degree of graphitization (GD) of carbonaceous material in pelitic schists. The areal variations of the metamorphic grade are presented by the distribution of GD calculated using the Lc and d002 of carbonaceous material. As a result, the two units are classified into four metamorphic zones, respectively: A1, A2, B1 and B2 for the Shirakura Unit; and I1, I2, II1 and II2 for the Sejiri Unit. The metamorphic grades of A1, A2, I1 and I2 are included in the chlorite zone, and that of B1, B2, II1 and II2 in the garnet zone of the Sanbagawa metamorphism. The degree of graphitization at the boundary between A2 and B1 zones is the same as that between I2 and II1 zones. Detailed study on the variation of GD suggests that the present‐day structure of the study area is best interpreted as a model of shuffled‐cards structure. An estimated minimum thickness of a stack of continuous cards is about 25 m. The compositions of garnet in pelitic schists and of amphibole in basic schists are different from those in the identical metamorphic range of the Shirakura and Sejiri units. It is suggested that rocks of the Shirakura Unit were metamorphosed under higher P/T conditions than those of the Sejiri Unit.  相似文献   
92.
Abstract The Ryoke Belt in the Ikoma Mountains, Nara Prefecture, Japan, is composed mainly of various granitic, intermediate and gabbroic rocks. Igneous activity in this area is divided into two periods, early–middle Jurassic and late Cretaceous, based on isotopic dating. The intermediate plutonic rocks in the Fukihata area are composed of two rock types: Kyuanji quartz diorite and Fukihata tonalite. Rb–Sr whole-rock isochron ages have been determined for both plutonic rocks. Their ages and initial 87Sr/86Sr ratios are as follows: the Kyuanji quartz diorite has an age of 161.0 ± 17.9 Ma with an initial 87Sr/86Sr ratio of 0.70727 ± 0.00007, while the Fukihata tonalite has an age of 121.4 ± 24.6 Ma with an initial 87Sr/86Sr ratio of 0.70753 ± 0.00020. Our chronological results indicate that the Kyuanji quartz diorite belongs to the Jurassic mafic rocks, such as the Ikoma gabbroic mass, while the Fukihata tonalite belongs to the early Cretaceous granitic rocks. Both these intermediate plutonic rocks have different chemical characteristics and were derived from different magmas.  相似文献   
93.
Abstract Granitoids are widely distributed in the Ryoke belt and have been divided into four main igneous stages based on their field setting. In this paper, we present Rb–Sr isochron ages for the younger Ryoke granitoids (second stage to fourth stage) in the Kinki district. The Yagyu granite (second stage) gave a Rb–Sr whole‐rock isochron age of 74.6 ± 10.9 Ma with an initial 87Sr/86Sr ratio of 0.70938 ± 0.00016, and a Rb–Sr mineral isochron age of 71.8 ± 0.1 Ma. The Narukawa granite (second stage) yielded a Rb–Sr mineral isochron age of 79.5 ± 0.4 Ma. A Rb–Sr whole‐rock isochron age of 78.3 ± 3.0 Ma with an initial 87Sr/86Sr ratio of 0.70764 ± 0.00014 was obtained for the Takijiri adamellite (third stage). The Katsuragi quartzdiorite (fourth stage) gave a Rb–Sr whole‐rock isochron age of 85.1 ± 18.3 Ma (initial 87Sr/86Sr ratio of 0.70728 ± 0.00006), and mineral isochron ages of 76.9 ± 0.5 Ma and 74.8 ± 0.5 Ma. The Minamikawachi granite (fourth stage) gave a Rb–Sr whole‐rock isochron age of 72.8 ± 2.0 Ma with an initial 87Sr/86Sr ratio of 0.70891 ± 0.00021. These age data indicate that the igneous activity in younger Ryoke granitoids of Kinki district occurred between 80 and 70 Ma, except for the Katsuragi quartz diorite. The isotopic data on the various igneous stages in Kinki district correspond with the relative timing from field observations. Based on the initial 87Sr/86Sr ratios, the granitoids of the Ryoke belt in Kinki district are spatially divided into two groups. One is granitoids with initial 87Sr/86Sr ratio of 0.707–0.708, distributed in the southern part of the Ryoke belt. The other is granitoids with initial 87Sr/86Sr ratio of 0.708–0.710 distributed in the northern part of the Ryoke belt. The initial 87Sr/86Sr ratios of granitoids increase with decreasing (becoming younger) Rb–Sr whole‐rock isochron ages.  相似文献   
94.
We apply a combination of earthquake early warning system (EEWS) and real-time strong motion monitoring system (RSMS) to emergency response for a high-rise building; The Kogakuin University has a 29-story high-rise building in Shinjuku Ward, Tokyo. The proposed strategy is based on the Plan, Do, Check, Action (PDCA) Cycle to brush up the systems and the users: in the “Plan” stage, we apply EEWS and RSMS to the building, where EEWS predicts not only short-period strong ground motions but also long-period ground motions [1]. The system is built into a building announcement system, an emergency elevator control system, and an email message system, which quickly send emails to the emergency response team. Meanwhile, RSMS provides information on seismic intensities at each floor of the building via the web browser in real time using the existing network in the building. In addition, the building response and structural damage can be estimated based on this information. The network system is impervious to the earthquake damage, because the network cable has extra length, there is, however, possible that a network system does not work due to power outage. Thus, we develop the network system that has uninterruptible power-supply system (UPS) and apply it to EEWS and RSMS. The high-rise building has the emergency call units to the security control center in the building on every floor. The emergency call line, however, will be busy promptly, because it is able to use only one line. Therefore, we installed IP telephone which uses the network system on main floors. UPS will work about 30 min after a major earthquake, it is supposed to be enough time for gathering the damage information about the building during initial response. In the “Do” stage, we prepare emergency response instruction manuals and educate the faculty members and students to carry out promptly emergency response. In the “Check” stage, the validity of the proposed systems are verified by carrying out an earthquake drill in an actual high-rise building. The earthquake drill confirmed that our proposed approach is valid. In the final “Action” stage, we improve these systems and emergency response manual and educate people in the building how to use effectively these systems.  相似文献   
95.
The inflow characteristics to each one of the rudders of single-propeller twin-rudder system are investigated. It is shown that this inflow is not parallel to ship's centerline. This may result in asymmetric maneuvering characteristic of the ship thereby reducing ship's maneuvering performance. For this purpose, a method of installing single-propeller twin-rudder system is proposed. This method is called “virtual zero rudder angle” arrangement. Here, each one of the twin-rudder is set at an angle corresponding to the inflow to the rudder. The improvement in ship's maneuvering characteristics with “virtual zero rudder angle” arrangement is investigated using experiments and numerical simulations for different ship types. It is shown that this arrangement may also improve ship's propulsion performance.  相似文献   
96.
We have conducted geochemical and mineralogical investigations of the rare earth and yttrium (REY)‐rich mud from the Minami‐Torishima area in the Pacific in order to clarify the concentration of REY and their host‐phase in the mud. X‐ray diffraction analysis shows that the mud is mainly composed of phillipsite, fluorapatite, quartz, albite, illite and montmorillonite. Whole‐rock CaO, P2O5 and total REY contents of the mud are positively correlated. Relative abundance of apatite is also positively correlated to P2O5 and total REY contents. These correlations suggest that apatite is the main host of the P2O5 and REY in the mud. We make in situ compositional analyses of constituent minerals in the REY mud. The results show that the apatite is abundant in REY (9300–32,000 ppm) and is characterized by a negative Ce anomaly and enrichment in heavy rare‐earth elements. This abundance and composition of REY of the mud is similar those of fish debris apatites. In contrast, phillipsite is less abundant in REY (60–170 ppm). Therefore we conclude that the main REY host phase of the mud is apatite.  相似文献   
97.
In spite of the large number of global three-dimensional (3-D) magnetohydrodynamic (MHD) simulations of accretion disks and astrophysical jets, which have been developed since 2000, the launching mechanisms of jets is somewhat controversial. Previous studies of jets have concentrated on the effect of the large-scale magnetic fields permeating accretion disks. However, the existence of such global magnetic fields is not evident in various astrophysical objects, and their origin is not well understood. Thus, we study the effect of small-scale magnetic fields confined within the accretion disk. We review our recent findings on the formation of jets in dynamo-active accretion disks by using 3-D MHD simulations. In our simulations, we found the emergence of accumulated azimuthal magnetic fields from the inner region of the disk (the so-called magnetic tower) and also the formation of a jet accelerated by the magnetic pressure of the tower. Our results indicate that the magnetic tower jet is one of the most promising mechanisms for launching jets from the magnetized accretion disk in various astrophysical objects. We will discuss the formation of cosmic jets in the context of the magnetic tower model.  相似文献   
98.
The redox state of Precambrian shallow seas has been linked with material cycle and evolution of the photosynthesis-based ecosystem. Iron is a redox-sensitive element and exists as a soluble Fe(II) species or insoluble Fe(III) species on Earth’s surface. Previous studies have shown that the iron isotopic ratio of marine sedimentary minerals is useful for understanding the ocean redox state, although the redox state of the Archean shallow sea is poorly known. This is partly because the conventional bulk isotope analytical technique has often been used, wherein the iron isotopic record may be dampened by the presence of isotopically different iron-bearing minerals within the same sample. Here we report a microscale iron isotopic ratio of individual pyrite grains in shallow marine stromatolitic carbonates over geological time using a newly developed, near-infrared femtosecond laser ablation multicollector ICP-MS technique (NIR-fs-LA-MC-ICP-MS).We have determined that the grain-scale iron isotopic distribution of pyrite from coeval samples shows a bimodal (2.7 and 2.3 Ga) or unimodal pattern (2.9, 2.6, and 0.7 Ga). In particular, pyrite from the 2.7 Ga Fortescue Group shows a unique bimodal distribution with highly positive (+1.0‰ defined as Type 1) and negative δ56Fe values (−1.8‰ defined as Type 2). Type 1 and 2 pyrites occasionally occur within different siliceous layers in the same rock specimen. Layer-scale iron isotopic heterogeneity indicates that the iron isotopic ratios of the two types of pyrite are not homogenized by diagenesis after deposition. Some cubic pyrites have a core with a positive δ56Fe value (1‰) and a rim with a crustal δ56Fe value (0‰). The observed isotopic zoning suggests that the positive δ56Fe value is a primary signature at the time of stromatolite formation, while secondary pyrite precipitated during diagenesis.The positive δ56Fe value of Type 1 and the large iron isotopic difference between Type 1 and 2 (2.8‰.) suggest partial Fe(II) oxidation in the 2.7-Ga shallow sea, i.e., pyritization of 56Fe-enriched ferric oxyhydroxide (Type 1) and 56Fe depleted Fe2+aq in seawater (Type 2). Type 2 pyrite was probably not produced by microbial iron redox cycling during diagenesis because this scenario requires a higher abundance of pyrite with δ56Fe of 0‰ than of −1.8‰. Consequently, the degree of Fe(II) oxidation in the 2.7-Ga shallow sea can be estimated by a Fe2+aq steady-state model. The model calculation shows that half the Fe2+aq influx was oxidized in the seawater. This implies that O2 produced by photosynthesis would have been completely consumed by oxidation of the Fe2+aq influx. Grain-scale iron isotopic distribution of pyrite could be a useful index for reconstructing the redox state of the Archean shallow sea.  相似文献   
99.
This paper presents a study of the usefulness of flood layers as a time marker in sediments and a report of a case study of Lake Kizaki in central Japan. A flood layer can be identified as a layer having a higher density, coarser grain size, lower TN content, and higher C/N ratio than those of the upper and lower horizons. It can also be characterized by a hyperpycnal sequence composed of a basal coarsening-upward unit and a top fining-upward unit. When flood layers can be correlated with heavy rains in meteorological records, detailed age markers are well established in the sediment. Five flood layers were identified in the surface sediment of Lake Kizaki, and they could be attributed to the historical heavy rainfalls that took place on July 12, 1995; September 28, 1983; August 25, 1974; September 26, 1959; and September 1, 1949 under the constraint of an age model. A precise age model is essential to clarify the environmental changes such as the pollutant history in detail.  相似文献   
100.
This study develops a method for estimating the number of casualties that may occur while people evacuate from an inundation zone when a tsunami has inundated an area. The method is based on a simple model of hydrodynamic forces as they affect the human body. The method uses a Tsunami casualty index (TCI) computed at each grid point of a numerical tsunami model to determine locations and times within the tsunami inundation zone where evacuation during the tsunami inundation is not possible and therefore where casualties are likely to occur. The locations and times can be combined with information about population density to compute the potential number of casualties. This information is useful in developing tsunami evacuation routes that avoid such locations. To illustrate the method, it is applied to the Seattle waterfront in Washington State, USA, that is under the threat of possible tsunami disasters due to Seattle Fault earthquakes. Preliminary results suggest that the tsunami casualties may occur within the Seattle waterfront for 15 min, during the time interval from 3 to 18 min after a large Seattle Fault tsunami is generated when the background tide level is mean high water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号