首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25433篇
  免费   456篇
  国内免费   1112篇
测绘学   1458篇
大气科学   2315篇
地球物理   4741篇
地质学   12119篇
海洋学   1103篇
天文学   1663篇
综合类   2265篇
自然地理   1337篇
  2025年   1篇
  2024年   29篇
  2023年   21篇
  2022年   66篇
  2021年   61篇
  2020年   75篇
  2019年   79篇
  2018年   4813篇
  2017年   4093篇
  2016年   2649篇
  2015年   289篇
  2014年   159篇
  2013年   69篇
  2012年   1045篇
  2011年   2784篇
  2010年   2066篇
  2009年   2359篇
  2008年   1924篇
  2007年   2405篇
  2006年   96篇
  2005年   242篇
  2004年   429篇
  2003年   435篇
  2002年   276篇
  2001年   68篇
  2000年   81篇
  1999年   83篇
  1998年   65篇
  1997年   34篇
  1996年   32篇
  1995年   20篇
  1994年   21篇
  1993年   20篇
  1992年   18篇
  1991年   11篇
  1990年   10篇
  1989年   9篇
  1988年   5篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   21篇
  1980年   20篇
  1976年   6篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
911.
Numerical models for simulation of mass flows are typically focussed upon accurately predicting the paths, travel times and inundation from a single flow or collapse event. When considering catchment-based hazards from a volcano, this is complicated by often being faced with several possible scenarios. Over the last 800 years at Mt. Taranaki/Egmont, a number of dome growth and collapse events have resulted in the genesis and emplacement of block-and-ash flows (BAFs). Each BAF was directed northwestward by a breach in the crater rim. The latest dome collapse events in the AD 1880s and AD 1755 inundated the northwestern flank and had run-out lengths 10 km from source. Future activity of this type could have a devastating effect on the Taranaki region’s communities, infrastructure and economy. Hazard planning has involved constructing volcanic hazard maps based upon the areas inundated by past volcanic flows, with little consideration of present-day topography. Here, a numerical geophysical mass flow modelling approach is used to forecast the hazards of future comparable BAF events on NW Mt. Taranaki. The Titan2D programme encompasses a “shallow water”, continuum solution-based, granular flow model. Flow mechanical properties needed for this approach include estimates of internal and basal friction as well as the physical dimensions of the initial collapse. Before this model can be applied to Taranaki BAFs, the input parameters must be calibrated by simulating a range of past collapse events. By using AD 1860 and AD 1755 scenarios, initial collapse volumes can be well constrained and internal and basal friction angles can be evaluated through an iterative approach from previous run-out lengths. A range of possible input parameters was, therefore, determined to produce a suite of potentially inundated areas under present-day terrain. A suite of 10 forecasts from a uniformly distributed range were combined to create a map of relative probabilities of inundation by future BAF events. These results were combined in a GIS package to produce hazard zones related to user-specified hazard thresholds. Using these input parameter constraints, future hazard forecasts for this scale and type of event can also take into account changing summit and topographic configurations following future eruptive or collapse events.  相似文献   
912.
Jerusalem was hit by earthquakes several times in its history, in the course of which none of the holy sites of the three main faiths of the western world escaped damage. Intensities of the last ML 6.2, July 11, 1927 Dead Sea earthquake, reached MSK VIII in the Old City of Jerusalem and the surrounding villages. As future strong earthquakes are inevitable, the need for the evaluation of earthquake-related hazards is obvious. Only general geotechnical properties of the section exposed in the mountainous area of Jerusalem are available; therefore, the hazard assessment was conducted from a geological perspective. The hazards identified in this study are: (1) amplification of seismic acceleration due to soft rock and soil conditions; (2) amplification due to mountainous topography; (3) dynamic instability of natural slopes; and (4) potential failure of slopes that have undergone engineering development and were weakened due to damaging, steepening, overloading, and wetting beyond their natural state. We formulated relative grades of vulnerability for each of the hazards and delineated the zones that require further specific investigation. For practical use we constructed a summary map that combines the different hazard categories. Looking at the summary map, the ground at the central N–S axis zone across Jerusalem is the least vulnerable. The bedrock there is mostly hard carbonate, the topography is mild, and thus only the alluvial cover, if thicker than 3 m, should be considered sensitive. Yet although the natural hazard in this area is limited, the risk should not be underrated. Much of the city lies there, including buildings constructed before antiseismic codes were regulated, and traditional engineering practice should not be taken for granted as antiseismic proof either. Eastwards, the shear wave velocity (Vs) contrast between the hard and soft rocks as well as the notable topography in places, impose the potential for amplification. Slopes, either naturally or artificially cutting into the soft chalk, may expose the area to dynamic instability; thus, the ongoing extensive development of the city in this direction should certainly take into account all of this. West of the central axis, the potential of failure of both steep natural and urbanized slopes appears. Being a plausible direction for future urban expansion, these areas specifically call for careful environmental and engineering planning. For engineering purposes, however, a specific site investigation is still necessary. Nevertheless, the summary map established in this study sets up for Jerusalem, for the first time, a practical tool for environmental and municipal planning, emergency response planning, and civil protection.  相似文献   
913.
This paper analyzes the regional differences in dust weather and its relationship with climatic factors and vegetation cover, using data at 27 observation stations in the Beijing-Tianjin Sand Source Region from 1960 to 2007. There was a decreasing trend in dust weather in the southeast, which was correlated with wind and temperature. In contrast, in the northwest, the number of dusty days did not decrease and was significantly correlated with precipitation and vegetation cover. These results suggest that, in addition to the climate and underlying conditions, physical geographic conditions also influenced the frequency of dust weather.  相似文献   
914.
A method to extract geostrophic current in the daily mean HF radar data in the Kuroshio upstream region is established by comparison with geostrophic velocity determined from the along-track altimetry data. The estimated Ekman current in the HF velocity is 1.2% (1.5%) and 48° (38°)-clockwise rotated with respect to the daily mean wind in (outside) the Kuroshio. Furthermore, additional temporal smoothing is found necessary to remove residual ageostrophic currents such as the inertial oscillation. After removal of the ageostrophic components, the HF geostrophic velocity agrees well with that from the altimetry data with rms difference 0.14 (0.12) m/s in (outside) the Kuroshio.  相似文献   
915.
Myanmar is tenth among the world’s fish-producing countries and third in ASEAN (Association of Southeast Asian Nations). To understand the mechanisms underlying the high production, oceanographic and phytoplankton surveys, including primary productivity measurements based on pulse amplitude modulation fluorometry, were conducted near an active fishing ground near Myeik City. Three surveys, one in each of the representative seasons and covering the characteristic coastal environments, showed well-defined seasonality in primary production and phytoplankton occurrence. End of the dry season was the most productive, with productivity of 2.59 ± 1.56 g C m?2 day?1 and high concentration of chlorophyll a (3.14 ± 2.64 µg L?1). In this season, the phytoplankton population was dominated by high densities of the diatoms Bellerochea horologicalis and Chaetoceros curvisetus, whereas primary productivity was low at the onset of the dry season, 1.36 ± 0.77 g C m?2 day?1. However, this low primary production might be compensated by activation of microbial food chains originating from high dissolved organic carbon. The rainy season exhibited the lowest production, 6.6% of the end of the dry season, due to the extensive discharge of turbid water from the rivers which lowered euphotic layer depth and resulted in an unusually high diffuse attenuation coefficient of 2.30 ± 1.03 m?1. This incident of turbid water may be related to soil erosion from deforestation and mangrove deterioration. This research reveals the seasonal trend in Myanmar’s coastal productivity and its relationship to the tropical monsoon climate as well as emphasizing the importance of tropical coastal environments to the sustainability of the fisheries.  相似文献   
916.
Mesoscale features in the eastward extension of the Kuroshio were investigated using assimilation of TOPEX/POSEIDON (T/P) data into a three-layer quasi-geostrophic model. The T/P data exhibited an elongated state of the southern recirculation gyre in 1993–95 and 1997, between whose two periods the gyre had a contracted state in 1995–96. A few stationary eddies were located in the southern gyre during the contracted state. The baroclinic instability, which was indicated by the phase shift from the uppermost-to the lowest-layer anomalies toward the downstream side, was evident near the Kuroshio Extension (KE) path. Since the instability never appeared in the artificial model without bottom topography, the topographic barrier for the eastward flow in the lowest layer was a necessary condition for the instability. The instability synchronized with the transition in the western region of the KE axis from the elongated to the contracted states. This evolution was interpreted as if the baroclinic instability played some part in the KE states and was a trigger for the transition from the elongated to the contracted states.  相似文献   
917.
918.
Understanding the conditions that drive variation in recruitment of key estuarine species can be important for effective conservation and management of their populations. The Olympia oyster (Ostrea lurida) is native to the Pacific coast of North America and has been a target of conservation efforts, though relatively little information on larval recruitment exists across much of its range. This study examined the recruitment of Olympia oysters at biweekly to monthly intervals at four sites in northern San Francisco Bay from 2010 to 2015 (except 2013). Mean monthly temperatures warmed at all sites during the study, while winter (January–April) mean monthly salinity decreased significantly during a wet year (2011), but otherwise remained high as a result of a drought. A recurring peak in oyster recruitment was identified in mid-estuary, in conditions corresponding to a salinity range of 25–30 and >16 °C at the time of settlement (April–November). Higher average salinities and temperatures were positively correlated with greater peak recruitment. Interannual variation in the timing of favorable conditions for recruitment at each site appears to explain geographic and temporal variation in recruitment onset. Higher winter/spring salinities and warmer temperatures at the time of recruitment corresponded with earlier recruitment onset within individual sites. Across all sites, higher winter/spring salinities were also correlated with earlier onset and earlier peak recruitment. Lower winter salinities during 2011 also resulted in a downstream shift in the location of peak recruitment.  相似文献   
919.
Simulation experiments on the primary migration of oil were carried out on massive samples. The results proved that oil generated from source rocks was expelled in the form of an independent oil phase. High oil-expulsion efficiency was observed. It follows that the primary migration of oil is not directly dependent on the quantity of oil generated from the source rocks. Therefore, the oil-expulsion proportion was high though some source rocks yielded only a limited amount of oil. A great deal of gas was produced at the same time of oil-generation. Thus, it can be concluded that the main expulsion energy for oil primary migration came from these gases.  相似文献   
920.
High precision U–Pb geochronology of rutile from quartz–carbonate–white mica–rutile veins that are hosted within eclogite and schist of the Monte Rosa nappe, western Alps, Italy, indicate that the Monte Rosa nappe was at eclogite-facies metamorphic conditions at 42.6 ± 0.6 Ma. The sample area [Indren glacier, Furgg zone; Dal Piaz (2001) Geology of the Monte Rosa massif: historical review and personal comments. SMPM] consists of eclogite boudins that are exposed inside a south-plunging overturned synform within micaceous schist. Associated with the eclogite and schist are quartz–carbonate–white mica–rutile veins that formed in tension cracks in the eclogite and along the contact between eclogite and surrounding schist. Intrusion of the veins at about 42.6 Ma occurred at eclogite-facies metamorphic conditions (480–570°C, >1.3–1.4 GPa) based on textural relations, oxygen isotope thermometry, and geothermobarometry. The timing of eclogite-facies metamorphism in the Monte Rosa nappe determined in this study is identical to that of the Gran Paradiso nappe [Meffan-Main et al. (2004) J Metamorphic Geol 22:261–281], confirming that these two units have shared the same Alpine metamorphic history. Furthermore, the Gran Paradiso and Monte Rosa nappes underwent eclogite-facies metamorphism within the same time interval as the structurally overlying Zermatt-Saas ophiolite [∼50–40 Ma; e.g., Amato et al. (1999) Earth Planet Sci Lett 171:425–438; Mayer et al. (1999) Eur Union Geosci 10:809 (abstract); Lapen et al. (2003) Earth Planet Sci Lett 215:57–72]. The nearly identical PTt histories of the Gran Paradiso, Monte Rosa, and Zermatt-Saas units suggest that these units shared a common Alpine tectonic and metamorphic history. The close spatial and temporal associations between high pressure (HP) ophiolite and continental crust during Alpine orogeny indicates that the HP internal basement nappes in the western Alps may have played a key role in exhumation and preservation of the ophiolitic rocks through buoyancy-driven uplift. Coupling of oceanic and continental crust may therefore be critical in preventing permanent loss of oceanic crust to the mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号