Magnetic and electric field variations associated with the 2000 eruption of Miyake-jima volcano are summarized. For about 1 week prior to the July 8 phreatic explosion, significant changes in the total intensity were observed at a few stations, which indicated uprising of a demagnetized area from a depth of 2 km towards the summit: this non-magnetic source can be regarded as a vacant space itself. Electric and magnetic field variations were observed simultaneously associated with the tilt-step event, which was the abrupt (∼50 s) inflation at a few km depth within the volcano followed by gradual recovery (∼several hours). The electric field is ascribed to the electrokinetic effect most probably due to forced injection of fluids from the source, while the magnetic field to the piezomagnetic effect due to increased pressure. Large magnetic variations amounting to a few tens of nT were observed at several stations since July 8, and they turned almost flat after the August 18 largest eruption. Magnetic changes are explained mostly by the vanishing of magnetic mass in the summit and additionally by the thermal demagnetization at a rather shallow depth. A large increase in the self-potential by 130 mV was also observed near the summit caldera associated with the August 18 eruption, which suggests that the hydrothermal circulation system sustained within the volcano for the past more than 10 years was destroyed by this eruption. 相似文献
In order to better estimate meso-scale variabilities in the energetic Kuroshio Extension (KE) region, simultaneous assimilation of drifter-derived velocity data, together with satellite and in situ hydrographic data, is attempted by using a high-resolution 4-dimensional variational data assimilation (4D-VAR) system. Our experimental results, both with and without assimilation of drifter data (Exp. Drf and Exp. Ref, respectively) for the period during Aug–Oct 2005, show that the reproduced fields in Exp. Drf better reflect the observed meso-scale features such as the KE meandering jet and associated eddies. The adjoint sensitivity analysis indicates that our 4D-VAR system has the ability to provide a more realistic timeseries of the meandering jet structures that play a key role in the intergyre exchange between the subtropical and subarctic gyres in the North Pacific. In addition, the observed information from the surface drifters works to improve the subsurface structure. These results illustrate the advantage of our 4D-VAR simultaneous assimilation with the addition of drifter-derived surface velocity information. 相似文献
This paper examines the possibility of using superconducting gravimeter (SG) observations without a tilt compensation system. SG data obtained at Syowa Station, Antarctica, were recorded without tilt compensation from April 5, 2001 to January 4, 2002, however, tilt signals were registered during this time period. A tilt correction was applied to gravity data from August 2, 2001 to January 4, 2002. After the tilt correction, errors of tidal parameters were dramatically reduced and tidal parameters themselves almost coincide with those from the same length of tilt-controlled gravity data recorded in 2000, when tilt compensation system was used. The noise level of the thermal leveler in the seismic band was also investigated. Averaged power spectra of gravity from 15 quiet days each in 2000 and 2001 recorded with and without the tilt compensation system, respectively, were compared. ‘Quiet’ in this case, means very low earthquake activity and calm wind conditions. No significant difference in the seismic band, except at the frequency of 2 mHz, was noticed. The difference at 2 mHz occurred because of room temperature variations caused by the water cooler, which cools down a compressor by automatically switching on and off. 相似文献
We investigated the influence of dynamical in-consistency of initial conditions on the predictive skill of decadal climate predictions. The investigation builds on the fully coupled global model “Coupled GCM for Earth Simulator” (CFES). In two separate experiments, the ocean component of the coupled model is full-field initialized with two different initial fields from either the same coupled model CFES or the GECCO2 Ocean Synthesis while the atmosphere is initialized from CFES in both cases. Differences between both experiments show that higher SST forecast skill is obtained when initializing with coupled data assimilation initial conditions (CIH) instead of those from GECCO2 (GIH), with the most significant difference in skill obtained over the tropical Pacific at lead year one. High predictive skill of SST over the tropical Pacific seen in CIH reflects the good reproduction of El Niño events at lead year one. In contrast, GIH produces additional erroneous El Niño events. The tropical Pacific skill differences between both runs can be rationalized in terms of the zonal momentum balance between the wind stress and pressure gradient force, which characterizes the upper equatorial Pacific. In GIH, the differences between the oceanic and atmospheric state at initial time leads to imbalance between the zonal wind stress and pressure gradient force over the equatorial Pacific, which leads to the additional pseudo El Niño events and explains reduced predictive skill. The balance can be reestablished if anomaly initialization strategy is applied with GECCO2 initial conditions and improved predictive skill in the tropical Pacific is observed at lead year one. However, initializing the coupled model with self-consistent initial conditions leads to the highest skill of climate prediction in the tropical Pacific by preserving the momentum balance between zonal wind stress and pressure gradient force along the equatorial Pacific.
Properties of seismoelectric waves in relation to natural earthquakes have been investigated. The electromagnetic disturbances were analyzed to test the hypothesis that pulse-like electric variations are directly related to microcracks as source. Because variation is very difficult to detect, there have been few quantitative field investigations. We used selected events with clear S and P phases from the data catalog obtained before the Tohoku earthquake in 2011. The electric strength of the fast P wave (Pf), S wave (S), and electromagnetic wave (EM) associated with formation of cracks of tensile mode were estimated. The co-seismic electric signal accompanied by the S wave has the largest strength, well above the noise level, and the EM wave has the lowest strength. Analytical estimation of the ratio of the strengths of the Pf and EM phases to that of the S phase by use of Pride’s equations gave results partially in agreement with observation (the order was Apf > As > Aem). The strength of the observed electromagnetic mode is approximately two orders of magnitude larger than that estimated from the theory. We suggest this greater strength can be attributed to the converted modes at layer contracts or to the effect of the boundary between free atmosphere and crust. Overall agreement between observations and theoretical estimates suggests that electromagnetic anomalies, crustal deformation, and groundwater changes can be investigated on the basis of the unified equations for the coupled electromagnetics, acoustics, and hydrodynamics of porous media. 相似文献
1 Introduction: A Dissonant Fragment On entering Chichibu, many visitors feel as if they were passing through a time warp into another country or a bygone era as the train leaves behind Tokyo抯crowded suburbs and winds through steep slopes forested with oaks, beeches and cedars. The Oku Chichibu highlands, however, are a mere 70 kilometers northwest of Tokyo, or about 50 minutes by rail, less than the average two-hour of daily commute of 搒alarymen?within metropolitan area. The sense of s… 相似文献
A sensitivity experiment has been performed by assimilating altimetric data into a 1.5-layer primitive equation model as a
first attempt to examine the impact of initialization on forecasts of the Kuroshio path variability south of Japan. By exploiting
the advantage of an adjoint model, our approach clearly shows that a small meander off Shikoku Island has a large impact on
the prediction of meander growth in the Kuroshio region. Further, the strengthening of the Kuroshio current and its recirculation
clearly becomes an important factor in the development of the meander. These results demonstrate the effectiveness of our
assimilation approach in identifying efficient initialization schemes on numerical forecasting of the Kuroshio south of Japan
and should help in the construction of an effective observing system for improving the forecasting.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
A coupled ice-ocean model is configured for the pan-Arctic and northern North Atlantic Ocean with a 27.5 km resolution. The model is driven by the daily atmospheric climatology averaged from the 40-year NCEP reanalysis (1958–1997). The ocean model is the Princeton Ocean Model (POM), while the sea ice model is based on a full thermodynamical and dynamical model with plastic-viscous rheology. A sea ice model with multiple categories of thickness is utilized. A systematic model-data comparison was conducted. This model reasonably reproduces seasonal cycles of both the sea ice and the ocean. Climatological sea ice areas derived from historical data are used to validate the ice model performance. The simulated sea ice cover reaches a maximum of 14 × 106 km2 in winter and a minimum of 6.7 × 106 km2 in summer. This is close to the 95-year climatology with a maximum of 13.3 × 106 km2 in winter and a minimum of 7 × 106 km2 in summer. The simulated general circulation in the Arctic Ocean, the GIN (Greenland, Iceland, and Norwegian) seas, and northern North Atlantic Ocean are qualitatively consistent with historical mapping. It is found that the low winter salinity or freshwater in the Canada Basin tends to converge due to the strong anticyclonic atmospheric circulation that drives the anticyclonic ocean surface current, while low summer salinity or freshwater tends to spread inside the Arctic and exports out of the Arctic due to the relaxing wind field. It is also found that the warm, saline Atlantic Water has little seasonal variation, based on both simulation and observations. Seasonal cycles of temperature and salinity at several representative locations reveals regional features that characterize different water mass properties. 相似文献
We produced a four-dimensional variational ocean re-analysis for the Western North Pacific over 30 years (FORA-WNP30). It is the first-ever dataset covering the western North Pacific over 3 decades at eddy-resolving resolution. The four-dimensional variational analysis scheme version of the Meteorological Research Institute Multivariate Ocean Variational Estimation system (MOVE-4DVAR) is employed to conduct a long-term reanalysis experiment during 1982–2012. After evaluating the basic performance of FORA-WNP30, the interannual to decadal variability is analyzed. Overall, FORA-WNP30 reproduces basic features in the western North Pacific well. One of outstanding features in FORA-WNP30 is that anomalous events such as the Kuroshio large meander and anomalous intrusion of the Oyashio in the 1980s, when there were no altimeter data, are successfully reproduced. FORA-WNP30 is therefore a valuable dataset for a variety of oceanographic research topics and potentially for related fields such as climate study, meteorology and fisheries. 相似文献