首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5460篇
  免费   1665篇
  国内免费   608篇
测绘学   188篇
大气科学   484篇
地球物理   2681篇
地质学   2588篇
海洋学   434篇
天文学   587篇
综合类   246篇
自然地理   525篇
  2024年   16篇
  2023年   43篇
  2022年   125篇
  2021年   151篇
  2020年   174篇
  2019年   318篇
  2018年   356篇
  2017年   443篇
  2016年   461篇
  2015年   461篇
  2014年   516篇
  2013年   585篇
  2012年   431篇
  2011年   420篇
  2010年   414篇
  2009年   314篇
  2008年   332篇
  2007年   281篇
  2006年   195篇
  2005年   182篇
  2004年   178篇
  2003年   175篇
  2002年   150篇
  2001年   149篇
  2000年   180篇
  1999年   103篇
  1998年   70篇
  1997年   75篇
  1996年   90篇
  1995年   61篇
  1994年   65篇
  1993年   47篇
  1992年   32篇
  1991年   22篇
  1990年   24篇
  1989年   22篇
  1988年   18篇
  1987年   13篇
  1986年   7篇
  1985年   8篇
  1984年   3篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1936年   1篇
  1933年   1篇
排序方式: 共有7733条查询结果,搜索用时 15 毫秒
991.
We present a comprehensive characterisation of the physical, mineralogical, geomechanical, geophysical, and hydrodynamic properties of Corvio sandstone. This information, together with a detailed assessment of anisotropy, is needed to establish Corvio sandstone as a useful laboratory rock‐testing standard for well‐constrained studies of thermo–hydro–mechanical–chemical coupled phenomena associated with CO2 storage practices and for geological reservoir studies in general. More than 200 core plugs of Corvio sandstone (38.1 and 50 mm diameters, 2:1 length‐to‐diameter ratio) were used in this characterisation study, with a rock porosity of 21.7 ± 1.2%, dry density 2036 ± 32 kg m?3, and unconfined compressive and tensile strengths of 41 ± 3.28 and 2.3 ± 0.14 MPa, respectively. Geomechanical tests show that the rock behaves elastically between ~10 and ~18 MPa under unconfined conditions with associated Young's modulus and Poisson's ratio of 11.8 ± 2.8 GPa and 0.34 ± 0.01 GPa, respectively. Permeability abruptly decreases with confining pressure up to ~10 MPa and then stabilises at ~1 mD. Ultrasonic P‐ and S‐wave velocities vary from about 2.8–3.8 km s?1 and 1.5–2.4 km s?1, respectively, over confining and differential pressures between 0.1 and 35 MPa, allowing derivation of associated dynamic elastic moduli. Anisotropy was investigated using oriented core plugs for electrical resistivity, elastic wave velocity and attenuation, permeability, and tracer injection tests. Corvio sandstone shows weak transverse isotropy (symmetry axis normal to bedding) of <10% for velocity and <20% for attenuation.  相似文献   
992.
Commonly, geomagnetic prospection is performed via scalar magnetometers that measure values of the total magnetic intensity. Recent developments of superconducting quantum interference devices have led to their integration in full tensor magnetic gradiometry systems consisting of planar‐type first‐order gradiometers and magnetometers fabricated in thin‐film technology. With these systems measuring directly the magnetic gradient tensor and field vector, a significantly higher magnetic and spatial resolution of the magnetic maps is yield than those produced via conventional magnetometers. In order to preserve the high data quality in this work, we develop a workflow containing all the necessary steps for generating the gradient tensor and field vector quantities from the raw measurement data up to their integration into high­resolution, low­noise, and artefactless two‐dimensional maps of the magnetic field vector. The gradient tensor components are processed by superposition of the balanced gradiometer signals and rotation into an Earth‐centred Earth‐fixed coordinate frame. As the magnetometers have sensitivity lower than that of gradiometers and the total magnetic intensity is not directly recorded, we employ Hilbert‐like transforms, e.g., integration of the gradient tensor components or the conversion of the total magnetic intensity derived by calibrated magnetometer readings to obtain these values. This can lead to a better interpretation of the measured magnetic anomalies of the Earth's magnetic field that is possible from scalar total magnetic intensity measurements. Our conclusions are drawn from the application of these algorithms on a survey acquired in South Africa containing full tensor magnetic gradiometry data.  相似文献   
993.
In this paper, we present the uncertainty analysis of the 2D electrical tomography inverse problem using model reduction and performing the sampling via an explorative member of the Particle Swarm Optimization family, called the Regressive‐Regressive Particle Swarm Optimization. The procedure begins with a local inversion to find a good resistivity model located in the nonlinear equivalence region of the set of plausible solutions. The dimension of this geophysical model is then reduced using spectral decomposition, and the uncertainty space is explored via Particle Swarm Optimization. Using this approach, we show that it is possible to sample the uncertainty space of the electrical tomography inverse problem. We illustrate this methodology with the application to a synthetic and a real dataset coming from a karstic geological set‐up. By computing the uncertainty of the inverse solution, it is possible to perform the segmentation of the resistivity images issued from inversion. This segmentation is based on the set of equivalent models that have been sampled, and makes it possible to answer geophysical questions in a probabilistic way, performing risk analysis.  相似文献   
994.
Passive microseismic data are commonly buried in noise, which presents a significant challenge for signal detection and recovery. For recordings from a surface sensor array where each trace contains a time‐delayed arrival from the event, we propose an autocorrelation‐based stacking method that designs a denoising filter from all the traces, as well as a multi‐channel detection scheme. This approach circumvents the issue of time aligning the traces prior to stacking because every trace's autocorrelation is centred at zero in the lag domain. The effect of white noise is concentrated near zero lag; thus, the filter design requires a predictable adjustment of the zero‐lag value. Truncation of the autocorrelation is employed to smooth the impulse response of the denoising filter. In order to extend the applicability of the algorithm, we also propose a noise prewhitening scheme that addresses cases with coloured noise. The simplicity and robustness of this method are validated with synthetic and real seismic traces.  相似文献   
995.
In the free state, Rayleigh waves are assumed to travel in the form of planar wavefronts. Under such an assumption, the propagation behaviour of the modes of Rayleigh waves in layered half‐spaces is only frequency dependent. The frequency behaviour, which is often termed as dispersion, is determined by the shear wave velocity profile of layered soils within the depth related to wavelength (or frequency). According to this characteristic, the shear wave velocity profile can be back‐analysed from the dispersion. The technique is widely used in the surface wave testing. However, the wavefronts of Rayleigh waves activated by the surface sources are non‐planar. The geometric discrepancy could result in Rayleigh waves manifesting distance‐dependent behaviour, which is referred to as spatial behaviour in this paper. Conventional analysis ignoring this spatial behaviour could introduce unexpected errors. In order to take the effects of sources on the propagation behaviour into account, a new mathematical model is established for Rayleigh waves in layered elastic media under vertical disc‐like surface sources using the thin‐layer method. The spatial behaviour of the activated modes and the apparent phase velocity, which is the propagation velocity of Rayleigh waves superposed by the multiple modes, are then analysed. Aspects of the spatial behaviour investigated in this paper include the equilibrium path, the particle orbit, and the geometric attenuation of the activated Rayleigh waves. The results presented in this paper can provide some guidelines for developing new inverse mathematical models and algorithms.  相似文献   
996.
997.
The hydraulic properties of aquitards are not easily obtained because monitoring wells are usually installed in aquifers for groundwater resources management. Earthquake‐induced crust stress (strain) triggers groundwater level variations over a short period of time in a large area. These groundwater anomalies can be used to investigate aquifer systems. This study uses a poroelastic model to fit the postseismic variations of groundwater level triggered by the Chi‐Chi earthquake to evaluate the hydraulic properties of aquitards in the Jhoushuei River alluvial fan (JRAF), Taiwan. Six of the adopted eight wells with depths of 70 to 130 m showed good agreement with the recovery theory. The mean hydraulic conductivities (K) of the aquifers for the eight wells are 1.62 × 10?4 to 9.06 × 10?4 m/s, and the thicknesses are 18.8 to 46.1 m. The thicknesses of the aquitards are 11.3 to 42.0 m. Under the isotropic assumption for K, the estimated values of K for the aquitards are 3.0 × 10?8 to 2.1 × 10?6 m/s, corresponding to a silty medium. The results match the values obtained for the geological material of the drilling core and those reported in previous studies. The estimated values were combined with those given in previous studies to determine the distribution of K in the first two aquitards in the JRAF. The distribution patterns of the aquitards reflect the sedimentary environments and fit the geological material. The proposed technique can be used to evaluate the K value of aquitards using inverse methods. The inversion results can be used in hydrogeological analyses, contaminant modeling, and subsidence evaluation.  相似文献   
998.
Large agricultural fields in South Korea are located mostly on alluvial plains, where a significant amount of groundwater is used for heating of water‐curtain insulated greenhouses. Such greenhouses are commonly used for crop cultivation during the winter dry season from November to March. After use the groundwater is discharged directly into streams, causing groundwater depletion. A hydrogeological study was carried out in a typical agricultural area of this type, located on an alluvial aquifer near the Nakdong River. Groundwater levels, chemical characteristics, and temperatures from 68 observation wells were analyzed to determine the impacts of seasonal groundwater pumping on the groundwater system and stream‐aquifer interactions. Our results show that the groundwater system has not yet reached a state of dynamic equilibrium. Decades of excessive seasonal pumping have caused a gradual decline of groundwater levels, leading to groundwater depletion, especially in areas further from the river. Seasonal pumping has also significantly affected groundwater quality in the aquifer near the river. Groundwater temperature is decreasing (in this case a disadvantage), and saline groundwater is being diluted by induced recharge. The results of this study provide a basic outline for effective integrated water management that is widely applicable in South Korea.  相似文献   
999.
A new type of bracing system composed of friction energy dissipation devices for energy dissipation, pre‐pressed combination disc springs for self‐centering and tube members as guiding elements is developed and experimentally studied in this paper. The mechanics of this system are explained, the equations governing its hysteretic responses are outlined and large‐scale validation tests of two braces with different types of disc springs are conducted under the condition of low cyclic reversed loading. The experimental results demonstrate that the proposed bracing system exhibits a stable and repeatable flag‐shaped hysteretic response with an excellent self‐centering capability and effective energy dissipation throughout the loading protocol. Furthermore, the maximum bearing force and stiffness are predicted well by the equations governing its mechanical behavior. Fatigue and destructive test results demonstrate that the proposed bracing system can maintain stable energy dissipation and self‐centering capabilities under large deformation cyclic loading even when the tube members exceed the elastic limit and that a larger bearing capacity is achieved by the system that has disc springs without a bearing surface. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
1000.
The objective of studies presented in this paper is to analyse the spatial incoherency of seismic ground motions using signals from a velocimeter dense array located on a rock site, recording the aftershock sequence of the two M6 Kefalonia earthquakes that occurred in January/February 2014 (Kefalonia island, Greece). The analyses are carried out with both horizontal and vertical components of velocigrams for small separation distances of stations (<100 m). The coherencies of seismic ground motions identified from strong motion windows are compared with those identified from coda parts of signals. It is realized that there is no significant difference between the coherencies estimated from those two parts of signals. The influence of earthquake event number on the result of coherencies and the dispersions of coherencies estimated from different earthquake events are presented. Finally, coherencies estimated from the dense array are compared with several coherency models proposed and widely used in the literature. The possibility of modifying some parameters of those existing coherency models to fit with in situ coherencies are discussed and presented. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号