首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   1篇
  国内免费   1篇
大气科学   2篇
地球物理   27篇
地质学   57篇
海洋学   3篇
天文学   8篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   12篇
  2017年   10篇
  2016年   8篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   8篇
  2008年   8篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   3篇
  1990年   2篇
  1988年   1篇
  1985年   1篇
  1979年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
71.
72.
73.
Turkey is one of several countries frequently facing significant earthquakes because of its geological and tectonic position on earth. Especially, graben systems of Western Turkey occur as a result of seismically quite active tensional tectonics. The prediction of earthquakes has been one of the most important subjects concerning scientists for a long time. Although different methods have already been developed for this task, there is currently no reliable technique for finding the exact time and location of an earthquake epicenter. Recently artificial intelligence (AI) methods have been used for earthquake studies in addition to their successful application in a broad spectrum of data intensive applications from stock market prediction to process control. In this study, earthquake data from one part of Western Turkey (37–39.30° N latitude and 26°–29.30° E longitude) were obtained from 1975 to 2009 with a magnitude greater than M ≥ 3. To test the performance of AI in time series, the monthly earthquake frequencies of Western Turkey were calculated using catalog data from the region and then the obtained data set was evaluated with two neural networks namely as the multilayer perceptron neural networks (MLPNNs) and radial basis function neural networks (RBFNNs) and adaptive neuro-fuzzy inference system (ANFIS). The results show that for monthly earthquake frequency data prediction, the proposed RBFNN provides higher correlation coefficients with real data and smaller error values.  相似文献   
74.
Süphan is a 4,050 m high Pleistocene-age stratovolcano in eastern Anatolia, Turkey, with eruptive products consisting of transitional calc-alkaline to mildly alkaline basalts through trachyandesites and trachytes to rhyolites. We investigate the relative contributions of fractional crystallization and magma mixing to compositional diversity at Süphan using a combination of petrology, geothermometry, and melt inclusion analysis. Although major element chemistry shows near-continuous variation from basalt to rhyolite, mineral chemistry and textures indicate that magma mixing played an important role. Intermediate magmas show a wide range of pyroxene, olivine, and plagioclase compositions that are intermediate between those of basalts and rhyolites. Mineral thermometry of the same rocks yields a range of temperatures bracketed by rhyolite (~750°C) and basalt (~1,100°C). The linear chemical trends shown for most major and trace elements are attributed to mixing processes, rather than to liquid lines of descent from a basaltic parent. In contrast, glassy melt inclusions, hosted by a wide range of phenocryst types, display curved trends for most major elements, suggestive of fractional crystallization. Comparison of these trends to experimental data from basalts and trachyandesites of similar composition to those at Süphan indicates that melt inclusions approximate true liquid lines of descent from a common hydrous parent at pressures of ~500 MPa. Thus, the erupted magmas are cogenetic, but were generated at depths below the shallow, pre-eruptive magma storage region. We infer that chemical differentiation of a mantle-derived basalt occurred in the mid- to lower crust beneath Süphan. A variety of more and less evolved melts with ≥55 wt% SiO2 then ascended to shallow level where they interacted. The presence of glomerocrysts in many lavas suggests that cogenetic plutonic rocks were implicated in the interaction process. Blending of diverse, but cogenetic, minerals, and melts served to obscure the true liquid lines of descent in bulk rocks. The fact that chemical variation in melt inclusions preserves deep-seated chemical differentiation indicates that inclusions were trapped in phenocrysts prior to shallow-level blending. Groundmass glasses evolved after mixing and display trends that are distinct from those of melt inclusions.  相似文献   
75.
In this study uranium and thorium contents and depositional characteristics of ay rhan bituminous shales( BS), west of Ankara(central Anatolia), are investigated. Samples used were collected from boreholes opened by Park Holding Ltd. A total of 25 samples were taken from bituminous shale levels in boreholes drilled at 6 different locations in the study area. The H rka formation which hosts bituminous shale deposits is a volcanosedimentary sequence and all lithofacies indicate that a lacustrine environment where the water level was continuously changed. In addition to hydrocarbon generation potential, bituminous shales also accumulate significant amount of radioactive elements such as uranium and thorium. The average uranium and thorium concentrations of BS(1.83/2.62 ppm) are much lower than averages of UC, NASK and PAAS(uranium: 2.70/2.66/3.10 ppm; thorium: 8.50/12.30/14.60 ppm). Low uranium contents in comparison to those of similar lacustrine environments might be attributed to that waters of depositional environment of BS contain low concentration of dissolved uranium and redox conditions were of oxic and dioxic character. Correlation data indicate that U and Th have a similar source and are associated predominantly with clays and phosphates and dominantly with organic material. Radioactive elements in the basin might be derived from Paleozoic granites and metamorphites(e.g. gneiss, schist) which comprise the basement and volcanism which was active in the region throughout the Miocene period. These elements are probably associated with uraniferous phosphate minerals(e.g. autunite, torbernite) which occur in granite, gneiss and schist. BS with average TOC content of 10.96 % shows very good/perfect source rock potential. Positive correlations between Gamma-Ray values and U, Th and K concentrations imply that radioactivity might be originated from these three elements.  相似文献   
76.
The Taurus Mountain is one of the most important karstic region of the world and dolines are characteristics landforms of this area. However, the number and distribution of doline are unknown in the study area. The aims of this study are to explain the total number of dolines, distribution of doline density, effects of slope conditions and the change of doline orientation in the Taurus Mountains. According to the 1/25000 scale topographic maps utilized in this study, a total of 140,070 dolines were determined in a 13,189 km2 area on eleven high karstic plateaus bordered by steep slopes and deep gorges. These plateaus are substantially affected by highly-faulted and jointed systems and about 80% of each plateau is covered with neritic limestone. The dolines are located at an elevation between 10 and 2870 m. Average elevation of all dolines is 1842 m. 90% of dolines are located between 1300 and 2270 m and only 5% of dolines found under 1330 m. According to this results, the densest doline zone corresponds to the alpine and periglacial zone above the treeline. Doline density reaches?>?100 doline/km2 on Mt. Anamas and the Seyran, Geyik and Akda? ranges as well as the Ta?eli plateau. Maximum density (187 doline/km2) is found on the Akda? Mountains. However, 66% of the study area is characterized by low density, 29.9% with moderate density, 3.4% with high density and 0.7% with very high density. The highest doline densities are seen on gentle slopes (15°–25°/km2) and steep slopes (>?35°/km2) are limited doline distribution. According to the rose diagram formed by the azimuths of the long axis of the dolines at the Central Taurus, two direction are dominant in doline orientations (NW–SE and NE–SW). However, dominant directions are NE-SW at eastern, NE–SW and NW–SE at central and NW-SE at western part of the Central Taurus. According to this elongations, doline orientations are formed an arc which is formed by tectonic evolution of the Central Taurus.  相似文献   
77.
Geotechnical Engineering has developed many methods for soil improvement so far. One of these methods is the stone column method. The structure of a stone column generally refers to partial change of suitable subsurface ground through a vertical column, poor stone layers which are completely pressed. In general terms, to improve bearing capacity of problematic soft and loose soil is implemented for the resolution of many problems such as consolidation and grounding problems, to ensure filling and splitting slope stability and liquefaction that results from a dynamic load such as earthquake. In this study, stone columns method is preferred as an improvement method, and especially load transfer mechanisms and bearing capacity of floating stone column are focused. The soil model, 32 m in width and 8 m in depth, used in this study is made through Plaxis 2D finite element program. The clay having 5° internal friction angle with different cohesion coefficients (c 10, c 15, c 20 kN/m2) are used in models. In addition, stone columns used for soil improvement are modeled at different internal friction angles (? 35°, ? 40°, ? 45°) and in different s/D ranges (s/D 2, s/D 3), stone column depths (B, 2B, 3B) and diameters (D 600 mm, D 800 mm, D 1000 mm). In the study, maximum acceleration (a max = 1.785 m/s2) was used in order to determine the seismic coefficient used. In these soil models, as maximum acceleration, maximum east–west directional acceleration value of Van Muradiye earthquake that took place in October 23, 2011 was used. As a result, it was determined that the stone column increased the bearing capacity of the soil. In addition, it is observed that the bearing capacity of soft clay soil which has been improved through stone column with both static and earthquake load effect increases as a result of increase in the diameter and depth of the stone column and decreases as a result of the increase in the ranges of stone column. In the conducted study, the bearing capacity of the soil models, which were improved with stone column without earthquake force effect, was calculated as 1.01–3.5 times more on the average, compared to the bearing capacity of the soil models without stone column. On the other hand, the bearing capacity of the soil models with stone columns, which are under the effect of earthquake force, was calculated as 1.02–3.7 times more compared to the bearing capacity of the soil models without stone column.  相似文献   
78.
Time-lapse seismic is one of the main methods for monitoring changes in reservoir conditions caused by production or injection of fluids. One approach to time-lapse seismic is through permanent reservoir monitoring, whereby seismic sources and/or receivers are permanently deployed. Permanent reservoir monitoring can offer a more cost-effective and environmentally friendly solution than traditional campaign-based surveys that rely on temporarily deployed equipment while facilitating more frequent measurements. At the CO2CRC Otway Project, surface orbital vibrators were coupled to a buried geophone array to form a permanent reservoir monitoring system. These are fixed position seismic sources that provide both P and S waves using induction motor-driven eccentric masses. After an initial injection of CO2 in February 2016, five months of continuous seismic data were acquired, and reflection imaging was used to assess the system performance. Analysis of the data showed the effects of weather variations on the near-surface conditions and the sweep signatures of surface orbital vibrators. Data processing flows of the continuous data was adapted from Vibroseis four-dimensional data processing flows. Ground roll proved a significant challenge to data processing. In addition, variations in the surface wave pattern were linked to major rainfall events. For the appraisal of surface orbital vibrators in imaging, a Vibroseis four-dimensional monitor survey data with similar geometry was also processed. Surface orbital vibrators are observed to be reliable sources with a potential to provide a repeatable signal, especially if the ground roll should fall outside the target window of interest. To guide future permanent reservoir monitoring applications, a repeatability analysis was performed for the various key data processing steps.  相似文献   
79.
Tuffs have been used as a construction material possibly since ancient times. In Afyonkarahisar, Turkey, there are numerous buildings constructed by tuff. Tuff has been a local construction material, during the Roman, Seljuk and Ottoman periods. Even though tuffs have relatively low durability and low strength values compared to marble, etc., they have survived with no major deterioration failures on many historical buildings. It has also been preferred because of its high porous texture, lightweight and easy shaping and process properties in the building sector. Naturally, it would be easily affected by water and humidity because of its porous structure. However, having this kind of structure leads to poor durability properties due to keeping water in it. The main objective of this study was to evaluate the physical and mechanical properties of the tuff quarried from the region and possible water effect, which may lead to degradation of its strength and durability of the material, thereby shortening the life span of the building structure used. Samples, which were tested after exposing to water and the freeze and thaw effects, were measured at a certain time. In this study, uniaxial compressive strength and flexural strength tests were conducted on test samples. The test results indicate that water may deteriorate the tuff’s strength properties and durability of the materials in due time.  相似文献   
80.
A simple, rapid, and accurate method was developed for separation and preconcentration of trace levels of iron(III) and zinc(II) ions in environmental samples. Methyl‐2‐(4‐methoxy‐benzoyl)‐3‐(4‐methoxyphenyl)‐3‐oxopropanoylcarbamate (MMPC) has been proposed as a new complexing agent for Fe(III) and Zn(II) ions using solvent extraction prior to their determination by flame atomic absorption spectrometry (FAAS). Fe(III) and Zn(II) ions can be selectively separated from Fe(II), Pb(II), Co(II), Cu(II), Mn(II), Cr(III), Ni(II), Cd(II), Ag(I), Au(III), Pd(II), Cr(VI), and Al(III) ions in the solution by using the MMPC reagent. The analytical parameters such as pH, sample volume, shaking time, amount of MMPC reagent, volume of methyl isobutyl ketone (MIBK), effect of ionic strength, and type of back extractant were investigated. The recovery values for Fe(III) and Zn(II) ions were greater than 95% and the detection limits for Fe(III) and Zn(II) ions were 0.26 and 0.32 µg L?1, respectively. The precision of the method as the relative standard deviation changed between 1.8 and 2.1%. Calibration curves have a determination coefficient (r2) of at least 0.997 or higher. The preconcentration factor was found to be 100. Accuracy of the method was checked by analyzing of a certified reference material and spiked samples. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号