This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen was pseudo- dynamically loaded to indicate three earthquake ground motions of different hazard levels, after which the test specimen was subjected to a pseudo-static loading. This paper focuses on the design, construction and experiment of the test frame and validation of the simulation models. Research shows that a high-strength concrete frame reinforced with high-strength rebars is more eff icient and economical than a traditional reinforced concrete frame structure. In addition to the economies achieved by effective use of materials, research shows that the frame can provide enough strength to exceed conventional reinforced concrete frames and provide acceptable ductility. The test study provides evidence to validate the performance of a high- strength concrete frame designed according to current seismic code provisions. Based on previous test research, a nonlinear FEM analysis is completed by using OpenSees software. The dynamic responses of the frame structure are numerically analyzed. The results of the numerical simulation show that the model can calculate the seismic responses of the frame by OpenSees. At the same time, the test provides additional opportunities to validate the performance of the simulation models. 相似文献
<正>The eolian deposits distributed in the river valleys in the eastern margin of the Tibetan Plateau(TP)are very useful in neotectonic and paleoclimatic studies.Firstly,the climate in the eastern margin of the TP is mainly controlled by the Indian summer monsoon,and detailed studies on the loess-paleosol sequences in this region can provide valuable terrestrial evidence of past changes in the Indian summer monsoon.Secondly,the river terraces in the eastern margin of the TP are considered to be a sensitive recorder of neotectonism to reflect the timing and amplitude of the TP uplift.The formation ages of these 相似文献
The stable carbon isotope values of coalbed methane range widely, and also are gener- ally lighter than that of gases in normal coal-formed gas fields with similar coal rank. There exists strong carbon isotope fractionation in coalbed methane and it makes the carbon isotope value lighter. The correlation between the carbon isotope value and Ro in coalbed methane is less obvious. The coaly source rock maturity cannot be judged by coalbed methane carbon isotope value. The carbon isotopes of coalbed methane become lighter in much different degree due to the hydrodynamics. The stronger the hydrodynamics is, the lighter the CBM carbon isotopic value becomes. Many previous investigations indicated that the desorption-diffusion effects make the carbon isotope value of coalbed methane lighter. However, the explanation has encountered many problems. The authors of this arti- cle suggest that the flowing groundwater dissolution to free methane in coal seams and the free methane exchange with absorbed one is the carbon isotope fractionation mechanism in coalbed methane. The flowing groundwater in coal can easily take more 13CH4 away from free gas and com- paratively leave more 12CH4. This will make 12CH4 density in free gas comparatively higher than that in absorbed gas. The remaining 12CH4 in free gas then exchanges with the adsorbed methane in coal matrix. Some absorbed 13CH4 can be replaced and become free gas. Some free 12CH4 can be ab- sorbed again into coal matrix and become absorbed gas. Part of the newly replaced 13CH4 in free gas will also be taken away by water, leaving preferentially more 12CH4. The remaining 12CH4 in free gas will exchange again with adsorbed methane in the coal matrix. These processes occur all the time. Through accumulative effect, the 12CH4 will be greatly concentrated in coal. Thus, the stable carbon isotope of coalbed methane becomes dramatically lighter. Through simulation experiment on wa- ter-dissolved methane, it had been proved that the flowing water could fractionate the carbon isotope of methane, and easily take heavy carbon isotope away through dissolution. 相似文献
Magnetotelluric sounding data obtalned recently in Manas earthquake area were processed. Inthe result, curves of apparent resistivity, impedance Phase, skewness and optimum rotationangle versus period and the real magnetic induction vectors were obtained. Then the data ofall measuring points were interpreted by 2D automatic inversion. The result indicates thatalong the sounding profile the shallow crust can be divided into 5 segments and the deep crustcan be divided into 3 segments, with faults or deep-seated fault zones as the contactboundaries between them. The sedimentary cover along the profile extents down to depthabout 12 km in maximum and a low-resistivity body exists in the crust in southern section ofthe profile. The interpretation results are well consistent with geological and othergeophysical data. The Manas M7. 7 earthquake occurred near a contact zone where theelectrical structure of the crust sharply changes. 相似文献
In this paper, based on the previous study of practical use of seismic regime windows and seismic regime belts, the problem
of establishing a “seismic regime network” consisting of “windows” and “belts” is further posed and discussed according to
the observed fact that many “windows” and “belts” make responses to one earthquake. For the convenience of usage, the “seismic
regime network” is divided into two classes, the first class and the second one. The former can be used in tendency prediction
for long-term seismic activity in a large area, the latter used in short-term prediction in a small area. In this paper, after
briefly discussing the physical significance of “seismic regime network”, it is pointed out that this simple and easily used
method can be used to observe and extract seismic precursory information from a large area before a great earthquake, thus
it can provide a reliable basis for the analysis and judgement of seismic regime tendency in time and space. No doult, this
method is of certain practical significance.
The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 161–169, 1991.
The English version of this paper is improved by Prof. Shaoxie Xu. 相似文献
The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0 μmol−1·m−2·s−1) flux data during windy conditions (u* > 0.2 m·s−1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem C02 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol−1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m−2·s−1. Indistinctive seasonal variation of α or Amax was consistent with weak seasonal dynamics of leaf area index (LAf) in such a lower subtropical evergreen mixed forest, (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m−2mon−1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated WEE was estimated as −43.2±29.6 gC·m−2·mon−1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as −563.0 and −441.2 gC·m−2·a−1 respectively, accounting for about 32% of GPP.