首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3800篇
  免费   1009篇
  国内免费   1469篇
测绘学   582篇
大气科学   663篇
地球物理   908篇
地质学   2619篇
海洋学   638篇
天文学   49篇
综合类   285篇
自然地理   534篇
  2024年   49篇
  2023年   135篇
  2022年   225篇
  2021年   275篇
  2020年   247篇
  2019年   250篇
  2018年   222篇
  2017年   233篇
  2016年   236篇
  2015年   282篇
  2014年   276篇
  2013年   273篇
  2012年   343篇
  2011年   333篇
  2010年   337篇
  2009年   325篇
  2008年   290篇
  2007年   333篇
  2006年   303篇
  2005年   242篇
  2004年   197篇
  2003年   138篇
  2002年   169篇
  2001年   132篇
  2000年   112篇
  1999年   74篇
  1998年   32篇
  1997年   20篇
  1996年   12篇
  1995年   15篇
  1994年   22篇
  1993年   12篇
  1992年   18篇
  1991年   6篇
  1990年   15篇
  1989年   13篇
  1988年   8篇
  1987年   4篇
  1986年   7篇
  1985年   11篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1980年   4篇
  1979年   9篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1954年   6篇
排序方式: 共有6278条查询结果,搜索用时 4 毫秒
1.
Based on the land surface temperature (LST), the land cover classification map,vegetation coverage, and surface evapotranspiration derived from EOS-MODIS satellite data, and by the use of GIS spatial analytic technique and multivariate statistical analysis method, the urban heat island (UHI) spatial distribution of the diurnal and seasonal variabilities and its driving forces are studied in Beijing city and surrounding areas in 2001. The relationships among UHI distribution and landcover categories, topographic factor, vegetation greenness, and surface evapotranspiration are analyzed. The results indicate that: (i) The significant UHI occur in Beijing city areas in the four seasons due to high heat capacity and multi-reflection of compression building, as well as with special topographic features of its three sides surrounded by mountains,especially in the summer. The UHI spatial distribution is corresponding with the urban geometry structure profile. The LST difference is approximately 4-6℃ between Beijing city and suburb areas, comparatively is 8- 10℃ between Beijing city area and outer suburb area in northwestern regions. (ii) The UHI distribution and intensity in daytime are different from nighttime in Beijing city area, the nighttime UHI is obvious. However, in the daytime, the significant UHI mainly appears in the summer, the autumn takes second place, and the UHI in the winter and the spring seem not obvious. The surface evapotranspiration in suburb areas is larger than that in urban areas in the summer, and high latent heat exchange is evident, which leads to LST difference between city area and suburb area. (iii) The reflection of surface landcover categories is sensitive to the UHI, the correlation between vegetation greenness and UHI shows obviously negative.The scatterplot shows that there is the negative correlation between NDVI and LST (R2 = 0.6481).The results demonstrate that the vegetation greenness is an important factor for reducing the UHI,and large-scale construction of greenbelts can considerably reduce the UHI effect.  相似文献   
2.
为提高冰雹探测算法(Hail Detection Algorithm,HDA)产品的可用性,针对2015—2020年普洱地区监测到的22次冰雹个例,利用新一代雷达业务应用软件ROSE2.0对相关雷达基数据进行回放及产品分析,以命中率、虚警率、临界成功指数为指标对HDA算法在普洱地区的识别效果进行评估并给出本地化参数配置方案。结果表明:HDA算法在普洱地区命中率接近100%,但虚警现象非常普遍,使用强冰雹概率(Probability of Severe Hail,POSH)的预警效果优于任意大小冰雹概率(Probability of Hail,POH),且冰雹尺寸越大POSH虚警的概率越低。进一步使用模拟测评法对POSH算法的适配参数进行分析,发现正确输入降雹日当天的0 ℃层和-20 ℃层高度能有效减少POSH的虚警率及提高临界成功指数;同时使算法预测的最大冰雹直径普遍偏大的情况得到控制,其中,中小冰雹直径偏离百分比减小76.07%,改善效果显著高于大冰雹。此外,增大反射率因子及POSH阈值能有效控制虚警,但也导致漏报次数快速增加,当阈值太大时命中率明显降低,为了保证较高的命中率和临界成功指数,选择Z=50 dBz或POSH=70%为阈值能明显改善HDA算法的识别效果。  相似文献   
3.
The vertical structures and their dynamical character of PM2.5 and PM10 over Beijing urban areas are revealed using the 1 min mean continuous mass concentration data of PM2.5 and PM10 at 8, 100, and 320 m heights of the meteorological observation tower of 325 m at Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP CAS tower hereafter) on 10―26 August, 2003, as well as the daily mean mass concentration data of PM2.5 and PM10 and the continuous data of CO and NO2 at 8, 100 (low layer), 200 (middle layer), and 320 m (high layer) heights, in combination with the same period meteorological field observation data of the meteorological tower. The vertical distributions of aerosols observed on IAP CAS tower in Beijing can be roughly divided into two patterns: gradually and rapidly decreasing patterns, I.e. The vertical distribution of aerosols in calm weather or on pollution day belongs to the gradually decreasing pattern, while one on clean day or weak cold air day belongs to the rapidly decreasing pattern. The vertical distributive characters of aerosols were closely related with the dynamical/thermal structure and turbulence character of the atmosphere boundary layer. On the clean day, the low layer PM2.5 and PM10 concentrations were close to those at 8 m height, while the concentrations rapidly decreased at the high layer, and their values were only one half of those at 8 m, especially, the concentration of PM2.5 dropped even more. On the clean day, there existed stronger turbulence below 150 m, aerosols were well mixed, but blocked by the more stronger inversion layer aloft, and meanwhile, at various heights, especially in the high layer, the horizontal wind speed was larger, resulting in the rapid decrease of aerosol concentration, I.e. Resulting in the obvious vertical difference of aerosol concentrations between the low and high layers. On the pollution day, the concentrations of PM2.5 and PM10 at the low, middle, and high layers dropped successively by, on average, about 10% for each layer in comparison with those at 8 m height. On pollution days, in company with the low wind speed, there existed two shallow inversion layers in the boundary layer, but aerosols might be, to some extent, mixed below the inversion layer, therefore, on the pollution day the concentrations of PM2.5 and PM10 dropped with height slowly; and the observational results also show that the concentrations at 320 m height were obviously high under SW and SE winds, but at other heights, the concentrations were not correlated with wind directions. The computational results of footprint analysis suggest that this was due to the fact that the 320 m height was impacted by the pollutants transfer of southerly flow from the southern peripheral heavier polluted areas, such as Baoding, and Shijiazhuang of Hebei Province, Tianjin, and Shandong Province, etc., while the low layer was only affected by Beijing's local pollution source. The computational results of power spectra and periods preliminarily reveal that under the condition of calm weather, the periods of PM10 concentration at various heights of the tower were on the order of minutes, while in cases of larger wind speed, the concentrations of PM2.5 and PM10 at 320 m height not only had the short periods of minute-order, but also the longer periods of hour order. Consistent with the conclusion previously drawn by Ding et al., that air pollutants at different heights and at different sites in Beijing had the character of "in-phase" variation, was also observed for the diurnal variation and mean diurnal variation of PM2.5 and PM10 at various heights of the tower in this experiment, again confirming the "in-phase" temporal/spatial distributive character of air pollutants in the urban canopy of Beijing. The gentle double-peak character of the mean diurnal variation of PM2.5 and PM10 was closely related with the evident/similar diurnal variation of turbulent momentum fluxes, sensible heat fluxes, and turbulent kinetic energy at various heights in the urban canopy. Besides, under the condition of calm weather, the concentration of PM2.5 and PM10 declined with height slowly, it was 90% of 8 m concentration at the low layer, a little lesser than 90% at the middle layer, and 80% at the high layer, respectively. Under the condition of weak cold air weather, the concentration remarkably dropped with height, it was 70% of 8 m concentration at the low layer, and 20%―30% at the middle and high layers, especially the concentration of PM2.5 was even lower.  相似文献   
4.
徐文耀 《地球物理学报》2001,44(06):747-753
用国际参考地磁场模型(IGRF)分析了地磁场能量在地球内部的分布及其长期变化.结果表明,从1900年到2005年,地核以外地磁场总能量由6.818×1018J减少到6.594×1018J,减小了3.3%,地表以外地磁场总能量由8.658×101J减小到.63×101J,减小了11.4%.分析地球内部不同圈层地磁场能量的变化表明,地壳(A层)、上地幔(B层)、转换带(C层)、下地幔D′层的地磁场总能量在减小,但是下地幔"层的地磁场总能量却在快速增加.磁能密度随时间的变化更清楚地显示出磁能增加和减小的分界面在r=3840km处.上述结果表明,地核和地表以外地磁场总能量在趋势性减小的同时,也在进行重新分配.进一步分析表明,下地幔D"层磁能快速增长,主要是由高阶磁多极子的增强引起的.在地磁场倒转前,偶极矩减小而多极性相对增强在能量分布上的表现就是磁能向下地幔底部(特别是D"层)集中.  相似文献   
5.
基于有限元方法,参照细胞自动机模型,建立了一个地震活动演化的动力学模型.在这个模型中,根据边界条件和单元介质参数的分布,利用有限元方法确定各单元的应力增长速率.每个单元设定初始应力和摩擦因数,利用破裂准则可得到单元破裂所需时间.当单元破裂后,将破裂单元作为内部边界,利用有限元方法计算由于这个单元破裂对系统其他单元造成的应力调整.根据上述规则,建立一个由30×40个节点组成,在定常位移速率边界条件作用下的地震活动模型,探讨了区域应力场的动态演化、地震活动图像和各种参数变化对地震活动的影响.结果表明该模型在研究地震活动方面有一定优势并具有实用价值.  相似文献   
6.
凤城市赛马镇风洞洞穴特征及发育基本条件   总被引:1,自引:0,他引:1  
陈为民  姚明和  李洋  陈跃月 《地质与资源》2006,15(2):133-136,141
赛马镇风洞是我国东北规模较大的岩溶洞穴,洞长在2000m以上,已探测长度1265m.风洞具有纵坡降较小、支洞繁多、形态奇异及国内罕见的溶蚀景观“天锅”等特征.岩性、构造、水文地质特征等是控制洞穴发育的基本条件.风洞的发育约始于中更新世40万年前.  相似文献   
7.
信息化时代的发展,新技术革命正逐步改变着传统工业化的发展格局,遥感数据在土地覆盖监测、森林覆盖监测、草地覆盖监测以及湿地资源监测等方面具有不可忽视的重要作用.信息时代,实现遥感数据存档、共享、资源开发利用是当前考虑的重点问题.本文主要阐述信息时代遥感数据存档的必要性,分析当前遥感数据存档面临的主要问题,并提出适应社会生...  相似文献   
8.
在引入整体最小二乘平差准则的基础上,推导了整体最小二乘的迭代解法;同时,引入多元函数隐函数求导的方法以确定未知参数对观测数据的线性信息,解决了整体最小二乘下的精度评定问题。给出了运用新的解法在拟合函数确定以及坐标转换参数确定等方面的应用实例,验证了新算法的可行性。  相似文献   
9.
辽宁北部秀水盆地秀D1井孢粉组合及其地层意义   总被引:1,自引:1,他引:1  
孢粉化石采自辽宁省北部秀水盆地的秀D1井,分析、鉴定和系统研究结果表明,来自秀D1井井深62.1~1089.7m的孢粉化石自下而上划分为3个孢粉组合,下部孢粉组合(井深703.85~1089.7m)以Osmundacidites-Klukisporites-Podocarpidites为代表,地质时代为晚侏罗世堤塘期(Tithonian),中部孢粉组合(井深381.5~699.3m)以Densoisporites-Cicatricosisporites-Piceaepollenites为代表,地质时代为早白垩世贝里阿斯期(Berriassian),上部孢粉组合(井深62.1~339m)以Cicatricosisporites-Impardecispora-Pinuspollenites为代表,地质时代为早白垩世凡兰吟期—欧特里夫期(Valanginian-Hauterivian)。秀D1井钻遇地层所含孢粉组合特征在区域上可以与冀北地区大北沟组,辽宁西部地区下白垩统义县组、九佛堂组,松辽盆地东南缘下白垩统火石岭组、沙河子组所产的孢粉组合对比。含孢粉组合地层时代的确定解决了井柱地层的划分,以及与区域地层的对比关系,同时为区域地层古生物研究提供了翔实的基础资料。  相似文献   
10.
实景地图近年来发展迅速,在日常生活中应用广泛,如旅游景点、宾馆、银行、政府服务中心等的空间位置查询、服务内容介绍等。实景地图的生产方法、生产流程有多种多样,产品质量参差不齐。目前,利用轻型无人机航空摄影系统实现三维全景地图生产,生产方式方便、高效且质量较好。该文介绍了生产三维实景地图的无人机系统及三维实景地图生产方法与过程,通过采用无人机系统实景地图的生产实例,讲述了实景地图应用现状、发展前景及存在的问题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号