In a rheologically layered crust, compositional layers have an upper, elasto-plastic part and a lower, viscous one. When broken, the upper elastic part undergoes flexure, which is upward for the foot-wall and downward for the hanging wall. As a consequence of bending, stresses will develop locally that can overcome the strength of the plate and, therefore, impose the migration of active fault. In the lower, viscous part of each compositional layer, rocks can potentially flow. Numerical modelling of the behaviour of a crust made up of two compositional layers, during and following extension, shows that flow can take place not only in the lower crust but also, and more importantly, in the lower part of the upper crust. The ability of crustal rocks to flow influences the style and kinematics of rifted regions. When no flow occurs, subsidence will affect the extending areas, both hanging wall and foot-wall will subside with respect to an absolute reference frame such as sea level, and there will be a strict proportionality between extension and thinning. In addition, the downward movement of the fault blocks will decrease the local stresses created in the foot-wall and increase those of the hanging wall, thereby imposing a migration of fault towards the hanging wall. This is the behaviour of extensional settings developed on stabilised crust and which evolved in a passive margin. When flow does take place, middle crustal rocks will move towards the rifting zone causing isostatically driven upward movements that will be superimposed on movements associated with crustal and lithospheric thinning. Consequently, fault blocks will move upwards and the crust will show more extension than thinning. The upward movements will decrease the stresses developed in the hanging walls and increase those of the foot-wall. Faults will then migrate towards the foot-wall. Such a mode of deformation is expected in regions with thickened crust and has its most apparent expression in core complexes. 相似文献
In this work, uniaxial fatigue tests combined with post-test X-ray computed tomography (CT) scanning were conducted on marble samples with different interbed orientations, in order to reveal the anisotropic damage evolution characteristics during rock failure. The dynamic elastic modulus, damping ratio, fatigue deformation, damage evolution, accumulative damage modeling and crack pattern were systematically analyzed. The testing results indicate that the interbed structure in marble affects the damage evolution and the associated dynamic mechanical behaviors. The damage curve in “S” style indicates three-stage trend, namely, initial damage stage, steady damage stage and the accelerated damage stage. The damage index during cyclic deformation for marble presents obvious discrepancy. In addition, a fatigue damage prediction models was employed numerically as double-term power equations based on the experimental data. It is found that the selected damage model is suitable in modeling the rapid damage growth in the early and final stage of rock fatigue lifetime. Moreover, post-test CT scanning further reveals the anisotropic damage characteristics of marble, the crack pattern in the fractured sample is controlled by the interbed structure. What is more, the most striking founding is that the fracture degree is in consistent with the damage accumulation within the steady damage stage. Through a series of damage mechanical behavior analysis, the internal mechanism of the effect of interbed orientation on damage evolution of marble is firstly documented.
We study two asymptotic regimes of unstable miscible displacements in porous media, in the two limits, where a permeability-modified aspect ratio, RL=L/H(kv/kh)1/2, becomes large or small, respectively. The first limit is known as transverse (or vertical) equilibrium, the second leads to the problem of non-communicating layers (the Dykstra–Parsons problem). In either case, the problem reduces to the solution of a single integro-differential equation. Although at opposite limits of the parameter RL, the two regimes coincide in the case of equal viscosities, M=1. By comparison with high-resolution simulation we investigate the validity of these two approximations. The evolution of transverse averages, particularly under viscous fingering conditions, depends on RL. We investigate the development of a model to describe viscous fingering in weakly heterogeneous porous media under transverse equilibrium conditions, and compare with the various existing empirical models (such as the Koval, Todd–Longstaff and Fayers models). 相似文献
Using selected high quality plates collected at the I.A.U. Planetary Data Center in Meudon (Paris), the author has drawn 32 Mercator charts of the planet Mars for every opposition from 1907 to 1971. This graphic synthesis of albedo distribution may be used in the study of major surface changes over the years. 相似文献
The purpose of the paper is to present the statistical characterictics of mid-latitude VLF emissions (both unstructured hiss and structured emissions) based on the VLF data obtained at Moshiri in Japan (geomag. lat. 35°; L = 1.6) during the period January 1974–March 1984. Local time dependence of occurrence rate and the association with geomagnetic disturbances have been studied for both types of emissions. Both types (unstructured and structured) of mid-latitude VLF emissions are found to have definite correlations with geomagnetic disturbances. Then, the time delay of the emission event behind the associated geomagnetic disturbance has enabled us to estimate the resonant electron energy for VLF hiss to be 5 keV at L = 3–4 and that for structured VLF emissions to be considerably larger, such as 20 keV at L 4. Combined considerations of these estimated resonant energies, theoretical electron drift orbits and the local time dependences, allow us to construct the following model to explain the experimental results in a reasonable way. Electrons in a wide energy range are injected during disturbances around the midnight sector, followed by the eastward drift. Lower energy ( 5 keV) electrons tend to drift closer to the Earth, resulting in the dawnside enhancement of VLF hiss within the plasmasphere. Further, these lower energy electrons are allowed to enter the duskside asymmetric plasmaspheric bulge and to generate VLF hiss there. On the other hand, higher energy (20 keV) electrons tend to drift at L shells farther away from the Earth and those substorm electrons are responsible for the generation of structured VLF emissions around dawn due to an increase of plasma density from the sunlit ionosphere. However, such higher energy electrons are forbidden from entering the duskside of the magnetosphere and so we cannot expect a duskside peak in the occurrence of structured VLF emissions, which is in agreement with the experimental result. 相似文献
We are totally immersed in the Big Data era and reliable algorithms and methods for data classification are instrumental for astronomical research. Random Forest and Support Vector Machines algorithms have become popular over the last few years and they are widely used for different stellar classification problems. In this article, we explore an alternative supervised classification method scarcely exploited in astronomy, Logistic Regression, that has been applied successfully in other scientific areas, particularly biostatistics. We have applied this method in order to derive membership probabilities for potential T Tauri star candidates from ultraviolet-infrared colour-colour diagrams. 相似文献
High-resolution Hα filtergrams (0.2″) obtained with the Swedish 1-m Solar Telescope resolve numerous very thin, thread-like
structures in solar filaments. The threads are believed to represent thin magnetic flux tubes that must be longer than the
observable threads. We report on evidence for small-amplitude (1 – 2 km s−1) waves propagating along a number of threads with an average phase velocity of 12 km s−1 and a wavelength of 4″. The oscillatory period of individual threads vary from 3 to 9 minutes. Temporal variation of the
Doppler velocities averaged over a small area containing a number of individual threads shows a short-period (3.6 minutes)
wave pattern. These short-period oscillations could possibly represent fast modes in accordance with numerical fibril models
proposed by Díaz et al. (Astron. Astrophys.379, 1083, 2001). In some cases, it is clear that the propagating waves are moving in the same direction as the mass flows. 相似文献
We derive astrophysical and structural parameters of the poorly studied open clusters NGC 6866, NGC 7062, and NGC 2360 based on filtered 2MASS (J, J ? H) diagrams, and stellar radial density profiles. The field star decontamination technique is utilised for selecting high-probability cluster members. The E(B ? V) reddening values of the three clusters derived from 2MASS JHKs agree with those inferred from UBV and uvby ? β photometries. We find that the core mass function slopes are flatter than the halo’s for the three clusters. The large core and cluster radii of NGC 6866 and NGC 2360 indicate an expanded core, which may suggest the presence of stellar mass black-holes. NGC 2360 is located in the third quadrant (? = 229°.80), where Giant Molecular Clouds are scarce that, together with its relatively large mass (~1800 m⊙), might explain its longevity (~1.8 Gyr) in the Galaxy. 相似文献