首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7796篇
  免费   209篇
  国内免费   310篇
测绘学   213篇
大气科学   610篇
地球物理   1607篇
地质学   2919篇
海洋学   643篇
天文学   1865篇
综合类   29篇
自然地理   429篇
  2023年   42篇
  2022年   52篇
  2021年   57篇
  2020年   68篇
  2019年   82篇
  2018年   235篇
  2017年   190篇
  2016年   276篇
  2015年   163篇
  2014年   261篇
  2013年   415篇
  2012年   237篇
  2011年   408篇
  2010年   290篇
  2009年   462篇
  2008年   360篇
  2007年   328篇
  2006年   338篇
  2005年   311篇
  2004年   291篇
  2003年   273篇
  2002年   256篇
  2001年   222篇
  2000年   208篇
  1999年   179篇
  1998年   168篇
  1997年   163篇
  1996年   157篇
  1995年   136篇
  1994年   116篇
  1993年   93篇
  1992年   79篇
  1991年   87篇
  1990年   77篇
  1989年   83篇
  1988年   59篇
  1987年   101篇
  1986年   66篇
  1985年   65篇
  1984年   71篇
  1983年   74篇
  1982年   72篇
  1981年   73篇
  1980年   55篇
  1979年   53篇
  1977年   49篇
  1976年   48篇
  1975年   36篇
  1974年   31篇
  1973年   42篇
排序方式: 共有8315条查询结果,搜索用时 15 毫秒
321.
Bedform geometry is widely recognized to be a function of transport stage. Bedform aspect ratio (height/length) increases with transport stage, reaches a maximum, then decreases as bedforms washout to a plane bed. Bedform migration rates are also linked to bedform geometry, in so far as smaller bedforms in coarser sediment tend to migrate faster than larger bedforms in finer sediment. However, how bedform morphology (height, length and shape) and kinematics (translation and deformation) change with transport stage and suspension have not been examined. A series of experiments is presented where initial flow depth and grain size were held constant and the transport stage was varied to produce bedload dominated, mixed‐load dominated and suspended‐load dominated conditions. The results show that the commonly observed pattern in bedform aspect ratio occurs because bedform height increases then decreases with transport stage, against a continuously increasing bedform length. Bedform size variability increased with transport stage, leading to less uniform bedform fields at higher transport stage. Total translation‐related and deformation‐related sediment fluxes all increased with transport stage. However, the relative contribution to the total flux changed. At the bedload dominated stage, translation‐related and deformation‐related flux contributed equally to the total flux. As the transport stage increased, the fraction of the total load contributed by translation increased and the fraction contributed by deformation declined because the bedforms got bigger and moved faster. At the suspended‐load dominated transport stage, the deformation flux increased and the translation flux decreased as a fraction of the total load, approaching one and zero, respectively, as bedforms washed out to a plane bed.  相似文献   
322.
Thrombolites are a common component of carbonate buildups throughout the Phanerozoic. Although they are usually described as microbialites with an internally clotted texture, a wide range of thrombolite textures have been observed and attributed to diverse processes, leading to difficulty interpreting thrombolites as a group. Interpreting thrombolitic textures in terms of ancient ecosystems requires understanding of diverse processes, specifically those due to microbial growth and metazoan activity. Many of these processes are reflected in thrombolites in the Cambrian Carrara, Bonanza King, Highland Peak and Nopah formations, Great Basin, California, USA; they comprise eight thrombolite classes based on variable arrangements and combinations of depositional and diagenetic components. Four thrombolite classes (hemispherical microdigitate, bushy, coalescent columnar and massive fenestrated) contain distinct mesoscale microbial growth structures that can be distinguished from surrounding detrital sediments and diagenetic features. By contrast, mottled thrombolites have mesostructures that dominantly reflect post‐depositional processes, including bioturbation. Mottled thrombolites are not bioturbated stromatolites, but rather formed from disruption of an originally clotted growth structure. Three thrombolite classes (arborescent digitate, amoeboid and massive) contain more cryptic textures. All eight of the thrombolite classes in this study formed in similar Cambrian depositional environments (marine passive margin). Overall, this suite of thrombolites demonstrates that thrombolites are diverse, in both internal fabrics and origin, and that clotted and patchy microbialite fabrics form from a range of processes. The diversity of textures and their origins demonstrate that thrombolites should not be used to interpret a particular ecological, evolutionary or environmental shift without first identifying the microbial growth structure and distinguishing it from other depositional, post‐depositional and diagenetic components. Furthermore, thrombolites are fundamentally different from stromatolites and dendrolites in which the laminae and dendroids reflect a primary growth structure, because clotted textures in thrombolites do not always reflect a primary microbial growth structure.  相似文献   
323.
The alluvial architecture of fine‐grained (silt‐bed) meandering rivers remains poorly understood in comparison to the extensive study given to sand‐bed and gravel‐bed channels. This paucity of knowledge stems, in part, from the difficulty of studying such modern rivers and deriving analogue information from which to inform facies models for ancient sediments. This paper employs a new technique, the parametric echosounder, to quantify the subsurface structure of the Río Bermejo, Argentina, which is a predominantly silt‐bed river with a large suspended sediment load. These results show that the parametric echosounder can provide high‐resolution (decimetre) subsurface imaging from fine‐grained rivers that is equivalent to the more commonly used ground‐penetrating radar that has been shown to work well in coarser‐grained rivers. Analysis of the data reveals that the alluvial architecture of the Río Bermejo is characterized by large‐scale inclined heterolithic stratification generated by point‐bar evolution, and associated large‐scale scour surfaces that result from channel migration. The small‐scale and medium‐scale structure of the sedimentary architecture is generated by vertical accretion deposits, bed sets associated with small bars, dunes and climbing ripples and the cut and fill from small cross‐bar channels. This style of alluvial architecture is very different from other modern fine‐grained rivers reported in the literature that emphasize the presence of oblique accretion. The Río Bermejo differs from these other rivers because it is much more active, with very high rates of bank erosion and channel migration. Modern examples of this type of highly active fine‐grained river have been reported rarely in the literature, although ancient examples are more prevalent and show similarities with the alluvial architecture of the Río Bermejo, which thus represents a useful analogue for their identification and interpretation. Although the full spectrum of the sedimentology of fine‐grained rivers has yet to be revealed, meandering rivers dominated by lateral or oblique accretion probably represent end members of such channels, with the specific style of sedimentation being controlled by grain size and sediment load characteristics.  相似文献   
324.
The iron stable isotope compositions (δ56Fe) and iron valence states of ultrahigh‐pressure eclogites from Bixiling in the Dabie orogen belt, China, were measured to trace the changes of geochemical conditions during vertical transportation of earth materials, for example, oxygen fugacity. The bulk Fe3+/ΣFe ratios of retrograde eclogites, determined by Mössbauer spectroscopy, are consistently higher than those of fresh eclogites, suggesting oxidation during retrograde metamorphism and fluid infiltration. The studied eclogites (five samples) display limited mid‐ocean ridge basalts (MORB)‐like (~0.10‰) δ56Fe values, which are indistinguishable from their protoliths, that is, gabbro cumulates formed through differentiation of mantle‐derived basaltic magma. This suggests that Fe isotope fractionation during continental subduction is limited. Garnet separates display limited δ56Fe variation ranging from ?0.08 ± 0.07 ‰ to 0.02 ± 0.07‰, whereas coexisting omphacite displays a large variation of δ56Fe values from 0.15 ± 0.07‰ to 0.47 ± 0.07‰. Omphacite also has highly variable Fe3+/ΣFe ratios from 0.367 ± 0.025 to 0.598 ± 0.024, indicating modification after peak metamorphism. Omphacite from retrograde eclogites has elevated Fe3+/ΣFe ratios (0.54–0.60) compared to that from fresh eclogites (~0.37), whereas garnet displays a narrow range of ferric iron content with Fe3+/ΣFe ratios from 0.039 ± 0.013 to 0.065 ± 0.022. The homogenous δ56Fe values and Fe3+/ΣFe ratios of garnet suggest that it survived the retrograde metamorphism and preserved its Fe‐isotopic features and ferric contents of peak metamorphism. Because of similar diffusion rates of Fe and Mg in garnet and omphacite, and constant Δ26Mgomphacite‐garnet values (1.14 ± 0.04‰), equilibrium iron isotope fractionation between garnet and omphacite was probably achieved during peak metamorphism. Elevated Fe3+/ΣFe ratios of omphacite from retrograde eclogites and variant Δ56Feomphacite‐garnet values of the studied eclogites (0.13 ± 0.10‰ to 0.48 ± 0.10‰) indicate that oxidized geofluid infiltration resulted in the elevation of δ56Fe values of omphacite during retrograde metamorphism.  相似文献   
325.
The present study examined the influence of climate change on the spread of West Nile virus (WNV) in Canada among American crows (Corvus brachyrhynchos) by first identifying the significant climatic and environmental determinants of positive WNV cases in American crow specimens from 2009 to 2013. Using this information, we projected climate change scenarios on the potential spread of WNV in American crow species in Canada for three time periods: 2015–2039, 2040–2069, and 2070–2099. Using bird specimen, meteorological and land-use data, the statistical association between positive WNV cases in American crows and the environment was assessed by means of a general linear mixed model. Statistical results revealed that temperature and precipitation were significantly related to positive cases of WNV in American crows. Thus, climate change projections of summer mean temperature averages were projected for the three time periods. Climate change scenarios were created and imported into Quantum Geographic Information System (QGIS) and an algorithm was applied using the raster calculator to spatially delineate current and future areas of risk. Spatial analyses revealed that increased warming in the near future may increase the latitudinal extension of WNV in American crows in Canada.  相似文献   
326.
The cracked chevron notched Brazilian disc (CCNBD) specimen has been suggested by International Society for Rock Mechanics for measuring mode I fracture toughness of rocks. Subsequently, this specimen geometry has been widely extended to conduct mixed mode fracture tests on rocks as well. A straight through crack front during the fracturing process upon the root of the chevron notch is assumed in the testing principle, but has never been thoroughly evaluated before. In this study, for the first time, the progressive rock fracture mechanism of the CCNBD rock specimen under mixed mode loading is numerically simulated. Specimens under representative mixed mode loading angles are modelled; and the assumption of the straight through crack front growth is critically assessed. The results show that not only the notch tip but also the saw-cut chevron notch cracks during the experiments, yielding a prominent twisted front, far from being straight. The crack front never grows up to the root of the notch ligament and the straight through crack front assumption is never satisfied in the realistic rock fracture progress of this chevron notched specimen subjected to mixed mode loads. In contrast, the fracture progress features typical three-dimensional wing cracking towards the loading ends. The numerically observed progressive fracture mechanism reveals that the measuring principle of mixed mode fracture tests employing CCNBD specimens is significantly violated and the measures of both modes I and II fracture toughness are uncertain.  相似文献   
327.
328.
329.
330.
The effects of low- to high-angle (>30°) normal faults on sedimentary architectural units in the Eocene Wenchang Formation, Enping Sag, Pearl River Mouth Basin (PRMB), South China Sea were investigated utilising a high-quality 3D seismic data set and restored paleogeomorphology. It has been shown that sequence stratigraphic units and sedimentary architecture are significantly controlled by the low- to high-angle normal faults. The Wenchang Formation, a second-order sequence, can be subdivided into two para-second-sequences (the Lower and Upper Wenchang sequences, E2WL and E2WU) and seven third-order sequences (from base to top: SQ1~SQ7). The low-angle fault confined sequence architecture of the Wenchang Formation is mainly characterised by lateral stacking with the ratio of the vertical subsidence (V) to horizontal slip (H) being reduced from 1/2 for E2WL to 1/6 for E2WU. In contrast, the high-angle fault confined sequence is characterised by vertical stacking with the ratio of V/H close to 1 for sequences SQ1 to SQ7. In the 3D seismic area, the features of sediment-dispersal pattern were interpreted based on an integrated analysis of paleogeomorphology, seismic reflection characteristics, stratal thickness distribution and multiple attribute clustering. The results show that the large-scale fan delta, belt-shape lacustrine deposit and bird-foot braided delta systems mainly developed in the low-angle fault confined sequences, whereas small-scale fan delta, rhombus-shaped lacustrine deposit and lobe-shaped braided delta systems inherited tectono-sedimentary architectures in the high-angle fault confined sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号