首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10445篇
  免费   2233篇
  国内免费   2924篇
测绘学   1198篇
大气科学   1643篇
地球物理   2251篇
地质学   6060篇
海洋学   1578篇
天文学   404篇
综合类   1084篇
自然地理   1384篇
  2024年   84篇
  2023年   239篇
  2022年   710篇
  2021年   762篇
  2020年   639篇
  2019年   694篇
  2018年   761篇
  2017年   664篇
  2016年   751篇
  2015年   684篇
  2014年   719篇
  2013年   756篇
  2012年   677篇
  2011年   684篇
  2010年   677篇
  2009年   600篇
  2008年   541篇
  2007年   498篇
  2006年   445篇
  2005年   370篇
  2004年   311篇
  2003年   318篇
  2002年   428篇
  2001年   356篇
  2000年   319篇
  1999年   361篇
  1998年   226篇
  1997年   196篇
  1996年   168篇
  1995年   167篇
  1994年   151篇
  1993年   131篇
  1992年   112篇
  1991年   66篇
  1990年   64篇
  1989年   55篇
  1988年   34篇
  1987年   29篇
  1986年   36篇
  1985年   35篇
  1984年   15篇
  1983年   9篇
  1982年   15篇
  1981年   7篇
  1980年   10篇
  1979年   5篇
  1978年   4篇
  1958年   7篇
  1957年   2篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
221.
Tree-ring cores of thick leaf spruce (Picea crassifolia) taken from four sites at different elevations, in the middle of the Qilian Mountains, in the arid and semi-arid region of northwestern China, were used to develop four tree-ring width chronologies using standard dendrochronological methods. Results indicate that with increasing altitude the chronologies’ year-to-year variations decreased. Hence, the sensitivity of the tree-ring chronologies to climate decreases with altitude. Further analysis showed that the significant limiting factor on tree growth is spring precipitation. Measurements of stomata density and leaf dry weight suggest the species’ ecological adaptation strategy changes with elevation. At high elevation the metabolic rate of thick leaf spruce decreases, thus showing the effect of the climate.  相似文献   
222.
Oil and gas exploration in eastern Tarim Basin, NW China has been successful in recent years, with several commercial gas accumulations being discovered in a thermally mature to over-mature region. The Yingnan2 (YN2) gas field, situated in the Yingnan structure of the Yingjisu Depression, produces gases that are relatively enriched in nitrogen and C2+ alkanes. The δ13C1 (−38.6‰ to −36.2‰) and δ13C2 values (−30.9‰ to −34.7‰) of these gases are characteristic of marine sourced gases with relatively high maturity levels. The distributions of biomarkers in the associated condensates suggest close affinities with the Cambrian–Lower Ordovician source rocks which, in the Yingjisu Sag, are currently over-mature (with 3–4%Ro). Burial and thermal maturity modeling results indicate that paleo-temperatures of the Cambrian–Lower Ordovician source rocks had increased from 90 to 210 °C during the late Caledonian orogeny (458–438 Ma), due to rapid subsidence and sediment loading. By the end of Ordovician, hydrocarbon potential in these source rocks had been largely exhausted. The homogenization temperatures of hydrocarbon fluid inclusions identified from the Jurassic reservoirs of the YN2 gas field suggest a hydrocarbon emplacement time as recent as about 10 Ma, when the maturity levels of Middle–Lower Jurassic source rocks in the study area were too low (<0.7%Ro) to form a large quantity of oil and gas. The presence of abundant diamondoid hydrocarbons in the associated condensates and the relatively heavy isotopic values of the oils indicate that the gases were derived from thermal cracking of early-formed oils. Estimation from the stable carbon isotope ratios of gaseous alkanes suggests that the gases may have been formed at temperatures well above 190 °C. Thus, the oil and gas accumulation history in the study area can be reconstructed as follows: (1) during the late Caledonian orogeny, the Cambrian–Lower Ordovician marine source rocks had gone through the peak oil, wet gas and dry gas generation stages, with the generated oil and gas migrating upwards along faults and fractures to form early oil and gas accumulations in the Middle–Upper Ordovician and Silurian sandstone reservoirs; (2) since the late Yanshanian orogeny, the early oil accumulations have been buried deeper and oil has undergone thermal cracking to form gas; (3) during the late Himalayan orogeny, the seals for the deep reservoirs were breached; and the gas and condensates migrated upward and eventually accumulating in the relatively shallow Jurassic reservoirs.  相似文献   
223.
在准噶尔盆地西北缘,寻找岩性圈闭油气藏已是至关重要的问题。但人们几乎还是用常规的手段来寻找岩性油气藏,没有实质性进展。本文是以利用宽方位角采集的地震数据为基础,对数据进行高保真资料处理和参考标准层的层拉平解释。利用前人的区域地质研究成果和钻井解释成果对侏罗系的沉积环境进行了精细的描述,确定了拐19井区在下侏罗统三工河组的出油层段附近的沉积环境由湖泊相-三角洲前缘相-河流相-湖泊相的演化过程。利用地震属性解释的结果也能较好地反映目标区的沉积环境变迁,并且与区域地质、测井解释结果相吻合,为寻找油气提供了很好的依据。由此得出利用地震属性可以进行沉积环境变迁分析,为油田寻找岩性圈闭及油气藏做出贡献。  相似文献   
224.
225.
The Zhangye Region of Gansu Province is an important agricultural base in arid northwestern China. During the twentieth century, especially in the last five decades, the region has experienced sandy desertification. To document the status and causes of this deterioration, satellite images, meteorological and socioeconomic data to assess landscape change from 1993 to 2002 were interpreted and analyzed. The results show that during the intervening 9-year period the area of sandy lands has increased by 642.2 km2, which consist of aeolian sand dune (357.1 km2) and potential sandy land (216.3 km2). Although the development and reversion of sandy desertification co-exist, the sandy desertification in this area seems serious and is attributable to the irrational use of water and land.  相似文献   
226.
浙江磐安蕨类植物资源及其开发利用   总被引:5,自引:0,他引:5  
郝朝运  刘鹏 《山地学报》2005,23(5):606-615
调查统计,磐安共有蕨类植物112种,隶属于60属、34科。地理成分分析表明,种的地理成分以东亚分布,特别是中国一日本分布为主,区系显示出较明显的亚热带一暖温带过渡的特征。同时从水平分布、垂直分布和生态分布三种分布型分析了磐安蕨类植物资源的分布规律,并根据其用途,划分为药用植物资源、食用植物资源、观赏植物资源等。在以上研究的基础上,提出了合理开发利用磐安蕨类植物资源的一些建议。  相似文献   
227.
Water percolation and flow processes in subsurface geologic media play an important role in determining the water source for plants and the transport of contaminants or nutrients, which is essential for water resource management and the development of measures for pollution mitigation. During June 2013, the dynamics of the rainwater, soil water, subsurface flows and groundwater in a shallow Entisol on sloping farmland were monitored using a hydrometric and isotopic approach. The results showed that effective mixing of rainwater and soil water occurred in hours. The rebound phenomenon of δD profiles in soils showed that most isotope‐depleted rainwater largely bypassed the soil matrix when the water saturation in the soil was high. Preferential‐flow, which was the dominant water movement pattern in the vadose zone, occurred through the whole soil profile, and infrequent piston‐flow was mainly found at 20–40 cm in depth. The interflow in the soil layer, composed of 75.2% rainwater, was only generated when the soil profile had been saturated. Underflow in the fractured mudrock was the dominant flow type in this hillslope, and outflow was dominated by base flow (groundwater flow) with a mean contribution of 76.7%. The generation mechanism of underflow was groundwater ridging, which was superimposed upon preferential‐flow composed mainly of rainwater. The quick mixing process of rainwater and soil water and the rapid movement of the mixture through preferential channels in the study soil, which shows a typical bimodal pore size distribution, can explain the prompt release of pre‐event water in subsurface flow. Water sources of subsurface flows at peak discharge could be affected by the antecedent soil water content, rain characteristics and antecedent groundwater levels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
228.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   
229.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
230.
The Himalayan Foreland Basin in the Ganga Valley is key to assessing the pre‐collision relationship between cratonic India and the Himalaya – the world's largest mountain chain. The subsurface Ganga Supergroup, representing the sedimentary basement of the Ganga Valley, has been interpreted as a northern extension of the Proterozoic Vindhyan Supergroup in cratonic India. This interpretation is contentious because the depositional age of the Ganga Supergroup is not resolved: whereas the lower Ganga Supergroup is widely regarded as Proterozoic, the upper Ganga Supergroup has been variously inferred to include Neoproterozoic, lower Palaeozoic, or Cretaceous strata. Here, we integrate biostratigraphic and detrital zircon data from drill cores to show that the entire Ganga Supergroup is likely Proterozoic and can be correlated with Proterozoic successions on the northern Indian craton and in the Lesser Himalaya. This helps redefine the first‐order stratigraphic architecture and indicates broad depositional continuity along the northern Indian margin during the Proterozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号