全文获取类型
收费全文 | 80篇 |
免费 | 9篇 |
国内免费 | 1篇 |
专业分类
测绘学 | 1篇 |
大气科学 | 12篇 |
地球物理 | 31篇 |
地质学 | 35篇 |
海洋学 | 2篇 |
天文学 | 1篇 |
自然地理 | 8篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2020年 | 5篇 |
2019年 | 2篇 |
2018年 | 5篇 |
2017年 | 4篇 |
2016年 | 8篇 |
2014年 | 3篇 |
2013年 | 4篇 |
2012年 | 1篇 |
2011年 | 4篇 |
2010年 | 11篇 |
2009年 | 5篇 |
2008年 | 7篇 |
2007年 | 2篇 |
2006年 | 3篇 |
2005年 | 3篇 |
2004年 | 4篇 |
2002年 | 3篇 |
2001年 | 2篇 |
2000年 | 1篇 |
1999年 | 3篇 |
1998年 | 4篇 |
1997年 | 2篇 |
1992年 | 2篇 |
排序方式: 共有90条查询结果,搜索用时 15 毫秒
11.
Developing,choosing and using landscape evolution models to inform field‐based landscape reconstruction studies 下载免费PDF全文
A.J.A.M. Temme J. Armitage M. Attal Wouter van Gorp T.J. Coulthard J.M. Schoorl 《地球表面变化过程与地形》2017,42(13):2167-2183
Landscape evolution models (LEMs) are an increasingly popular resource for geomorphologists as they can operate as virtual laboratories where the implications of hypotheses about processes over human to geological timescales can be visualized at spatial scales from catchments to mountain ranges. Hypothetical studies for idealized landscapes have dominated, although model testing in real landscapes has also been undertaken. So far however, numerical landscape evolution models have rarely been used to aid field‐based reconstructions of the geomorphic evolution of actual landscapes. To help make this use more common, we review numerical landscape evolution models from the point of view of model use in field reconstruction studies. We first give a broad overview of the main assumptions and choices made in many LEMs to help prospective users select models appropriate to their field situation. We then summarize for various timescales which data are typically available and which models are appropriate. Finally, we provide guidance on how to set up a model study as a function of available data and the type of research question. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
12.
Lotte Oosterlee Tom J. S. Cox Wouter Vandenbruwaene Tom Maris Stijn Temmerman Patrick Meire 《Estuaries and Coasts》2018,41(3):613-625
Tidal marsh (re)creation on formerly embanked land is increasingly executed along estuaries and coasts in Europe and the USA, either by restoring complete or by reduced tidal exchange. Ecosystem functioning and services are largely affected by the hydro-geomorphologic development of these areas. For natural marshes, the latter is known to be steered by feedbacks between tidal inundation and sediment accretion, allowing marshes to reach and maintain an equilibrium elevation relative to the mean sea level. However, for marsh restoration sites, these feedbacks may be disturbed depending on the restoration design. This was investigated by comparing the inundation-elevation change feedbacks in a natural versus restoration site with reduced tidal exchange in the Scheldt estuary (Belgium). This study analyzes long-term (9 years) datasets on elevation change and tidal inundation properties to disentangle the different mechanisms behind this elevation-inundation feedback. Moreover, subsequent changes in sediment properties that may affect this feedback were explored. In the restoration area with reduced tidal exchange, we found a different elevation-inundation feedback than on natural marshes, which is a positive feedback on initially high sites (i.e., sediment accretion leads to increasing inundation, hence causing accelerating sediment accretion rates) and a gradual silting up of the whole area. Furthermore, there is evidence for the presence of a relict consolidated sediment layer. Consequently, shallow subsidence is less likely to occur. Although short-term ecological development of the tidal marsh was not impeded, long-term habitat development may be affected by the differences in hydro-geomorphological interactions. An increase of inundation frequency on the initially high sites may cause inhibition of habitat succession or even reversed succession. Over time, the climax state of the restoration area may be different compared to natural marshes. Moreover, sediment-related ecosystem services, such as nutrient and carbon burial, may be positively influenced because of continuing sedimentation, although flood water storage potential will decrease with increasing elevation. Depending on the restoration goals, ecosystem trajectories and delivery of ecosystem services can be controlled by adaptive management of the tidal volume entering the restoration area. 相似文献
13.
Combining a geological model with a geomechanical model, it generally turns out that the geomechanical model is built from units that are at least a 100 times larger in volume than the units of the geological model. To counter this mismatch in scales, the geological data model's heterogeneous fine-scale Young's moduli and Poisson's ratios have to be “upscaled” to one “equivalent homogeneous” coarse-scale rigidity. This coarse-scale rigidity relates the volume-averaged displacement, strain, stress, and energy to each other, in such a way that the equilibrium equation, Hooke's law, and the energy equation preserve their fine-scale form on the coarse scale. Under the simplifying assumption of spatial periodicity of the heterogeneous fine-scale rigidity, homogenization theory can be applied. However, even then the spatial variability is generally so complex that exact solutions cannot be found. Therefore, numerical approximation methods have to be applied. Here the node-based finite element method for the displacement as primary variable has been used. Three numerical examples showing the upper bound character of this finite element method are presented. 相似文献
14.
AbstractThe collocation technique has become a popular tool in oceanography and hydrology for estimating the error variances of different data sources such as in situ sensors, models and remote sensing products. It is also possible to determine calibration constants, for example to account for an off-set between the data sources. So far, the temporal autocorrelation structure of the errors has not been studied, although it is known that it has detrimental effects on the results of the collocation technique, in particular when calibration constants are also determined. This paper shows how the (triple) collocation estimators can be adapted to retrieve the autocovariance functions; the statistical properties as well as the structural deficencies are described. The coupling between the autocorrelation of the error and the estimation of calibration constants is studied in detail, due to its importance for analysing temporal changes. In soil moisture applications, such time variations can be induced, for example, by seasonal changes in the vegetation cover, which affect both models and remote sensing products. The limitations of the proposed technique associated with these considerations are analysed using remote sensing and in situ soil moisture data. The variability of the inter-sensor calibration and the autocovariance are shown to be closely related to temporal patterns of the data.Editor D. KoutsoyiannisCitation Zwieback, S., Dorigo, W., and Wagner, W., 2013. Estimation of the temporal autocorrelation structure by the collocation technique with an emphasis on soil moisture studies. Hydrological Sciences Journal, 58 (8), 1729–1747. 相似文献
15.
Maarten A. Prins Hongbo Zheng Kay Beets Simon Troelstra Patrick Bacon Ilse Kamerling Wouter Wester Martin Konert Xiangtong Huang Wang Ke Jef Vandenberghe 《第四纪科学杂志》2009,24(1):75-84
The Mangshan Plateau is located on the south bank of the Huang He (Yellow River) just west of the city of Zhengzhou, well outside the Loess Plateau in central China. Mixing models of the grain‐size data indicate that the loess deposits are mixtures of three loess components. Comparison of the mixing model with existing models established for a series of loess–palaeosol sequences from the Loess Plateau indicates that the Mangshan loess has been supplied from a proximal dust source, the Huang He floodplain, during major dust outbreaks. The high accumulation rates, the composition of the loess components, and especially the high proportions of a sandy loess component support this. Owing to the exceptionally high accumulation rates, the Mangshan grain size, magnetic susceptibility and carbonate records provide a high‐resolution archive of environmental and climate change. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
16.
Root properties of vegetation communities and their impact on the erosion resistance of river dikes 总被引:1,自引:0,他引:1 下载免费PDF全文
Wouter Vannoppen Jean Poesen Patrik Peeters Sarah De Baets Bart Vandevoorde 《地球表面变化过程与地形》2016,41(14):2038-2046
Predicted climate change and the associated sea level rise poses an increased threat of flooding due to wave overtopping events at sea and river dikes. To safeguard the land from flooding it is important to keep the soil erosion resistance at the dikes high. As plant roots can be very effective in reducing soil erosion rates by concentrated flow, the main goal of this study is to explore the variability in root system characteristics of five dike vegetation communities along the Scheldt River (Belgium) and to assess their effectiveness in controlling soil erosion rates during concentrated flow. This study is the first one to investigate systematically the erosion‐reducing potential of the root properties of representative dike vegetation communities in a temperate humid climate. Results show that the presence of Urtica dioica resulted in large differences in root length density (RLD) among dike vegetation communities. Observed RLD values in the topsoil ranged from 129 to 235 km m‐3 for dike vegetation communities without U. dioica, while smaller values ranging from 22 to 58 km m?3 were found for vegetation communities with U. dioica. The erosion‐reducing effect of the dike vegetation communities was estimated based on a global Hill curve model, linking the RLD to the soil detachment ratio (SDR; i.e. the ratio of the soil detachment rate for root‐permeated topsoils to the soil detachment rate for root‐free topsoils). Concentrated flow erosion rates are likely to be reduced to 13–16% of the erosion rates for root‐free topsoils if U. dioica is absent compared to 22–30% for vegetation communities with U. dioica. Hence, to maintain a high resistance of the soil against concentrated flow erosion it is important to avoid the overgrowth of grassland by U. dioica through an effective vegetation management. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
17.
The long‐term (10–100 years) evolution of tidal channels is generally considered to interact with the bio‐geomorphic evolution of the surrounding intertidal platform. Here we studied how the geometric properties of tidal channels (channel drainage density and channel width) change as (1) vegetation establishes on an initially bare intertidal platform and (2) sediment accretion on the intertidal platform leads to a reduction in the tidal prism (i.e. water volume that during a tidal cycle floods to and drains back from the intertidal platform). Based on a time series of aerial photographs and digital elevation models, we derived the channel geometric properties at different time steps during the evolution from an initially low‐elevated bare tidal flat towards a high‐elevated vegetated marsh. We found that vegetation establishment causes a marked increase in channel drainage density. This is explained as the friction exerted by patches of pioneer vegetation concentrates the flow in between the vegetation patches and promotes there the erosion of channels. Once vegetation has established, continued sediment accretion and tidal prism reduction do not result in significant further changes in channel drainage density and in channel widths. We hypothesize that this is explained by a partitioning of the tidal flow between concentrated channel flow, as long as the vegetation is not submerged, and more homogeneous sheet flow as the vegetation is deeply submerged. Hence, a reduction of the tidal prism due to sediment accretion on the intertidal platform, reduces especially the volume of sheet flow (which does not affect channel geometry), while the concentrated channel flow (i.e. the landscape forming volume of water) is not much affected by the tidal prism reduction. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
18.
Paul Duuring Wouter Bleeker Steve W. Beresford Nicholas Hayward 《Mineralium Deposita》2010,45(3):281-311
Perseverance is a world-class, komatiite-hosted nickel sulphide deposit situated in the well-endowed Leinster nickel camp
of the Agnew–Wiluna greenstone belt, Western Australia. The mine stratigraphy at Perseverance trends north-northwest (NNW),
dips steeply to the west, and is overturned. Stratigraphic footwall units lie along the western margin of the Perseverance
Ultramafic Complex (PUC). The PUC comprises a basal nickel sulphide-bearing orthocumulate- to mesocumulate-textured komatiite
that is overlain by a thicker, nickel sulphide-poor, dunite lens. Hanging wall rocks include rhyodacite that is texturally
and compositionally similar to footwall volcanic rocks. These rocks separate the PUC from a second sequence of nickeliferous,
E-facing, spinifex-textured komatiite units (i.e. the East Perseverance komatiite). Past workers argue for a conformable stratigraphic
contact between the PUC and the East Perseverance komatiite and conclude that the PUC is extrusive. This study, however, clearly
demonstrates that these komatiite sequences are discordant, implying that the PUC may have intruded rhyodacite country rock
as a sill with subsequent structural juxtaposition against the East Perseverance komatiite. Early N–S shortening associated
with the regional DI deformation event (corresponding to the local DP1 to DP3 events at Perseverance) resulted in the heterogeneous partitioning of strain along the margins of the competent dunite. A
mylonite developed in the more ductile footwall rocks along the footwall margin of the PUC, while isoclinal F3 folds, such as the Hanging wall limb and Felsic Nose folds, formed in low-mean stress domains along the fringes of the elongated
dunite lens. Strata-bound massive and disseminated nickel sulphides were passively fold thickened in hinge areas of isoclinal
folds, whereas basal massive sulphides lubricated fold limbs and promoted thrust movement along shallowly dipping lithological
contacts. Massive sulphides were physically remobilised up to 20 m from their primary footwall position into deposit-scale
fold hinges to form the 1A and Felsic Nose orebodies. First-order controls on the geometry of the Perseverance deposit include
the thermomechanical erosion of footwall rocks and the channelling of the mineralised komatiitic magma. Second- or third-order
controls are several postvolcanic deformation events, which resulted in the progressive folding and shearing of the footwall
contact, as well as the passive fold thickening of massive and disseminated sulphide orebodies. Massive sulphides were physically
remobilised into multiple generations of fold hinges and shear zones. Important implications for near-mine exploration in
the Leinster camp include identifying nickeliferous komatiite units, defining their three-dimensional geometry, and targeting
fold hinge areas. Fold plunge directions and stretching lineations are indicators of potential plunge directions of massive
sulphide orebodies. 相似文献
19.
Stratigraphic signatures of translation of thrust-sheet top basins over low-angle detachment faults 总被引:1,自引:0,他引:1
Abstract Low‐angle detachment faults and thrust‐sheet top basins are common features in foreland basins. However, in stratigraphic analysis their influence on sequence architecture is commonly neglected. Usually, only eustatic sea level and changing flexural subsidence are accounted for, and when deformation is considered, the emphasis is on the generation of local thrust‐flank unconformities. This study analyses the effects of detachment angle and repetitive detachment activation on stratigraphic stacking patterns in a large thrust‐sheet top basin by applying a three‐dimensional numerical model. Model experiments show that displacement over low‐angle faults (2–6°) at moderate rates (~5.0 m kyr?1) results in a vertical uplift component sufficient to counteract the background flexural subsidence rate. Consequently, the basin‐wide accommodation space is reduced, fluvio‐deltaic systems carried by the thrust‐sheet prograde and part of the sediment supply is spilled over towards adjacent basins. The intensity of the forced regression and the interconnectedness of fluvial sheet sandstones increases with the dip angle of the detachment fault or rate of displacement. In addition, the delta plain is susceptible to the formation of incised valleys during eustatic falls because these events are less compensated by regional flexural subsidence, than they would be in the absence of fault displacement. 相似文献
20.
Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America 总被引:2,自引:1,他引:2
Monthly geopotential spherical harmonic coefficients from the GRACE satellite mission are used to determine their usefulness and limitations for studying glacial isostatic adjustment (GIA) in North-America. Secular gravity rates are estimated by unweighted least-squares estimation using release 4 coefficients from August 2002 to August 2007 provided by the Center for Space Research (CSR), University of Texas. Smoothing is required to suppress short wavelength noise, in addition to filtering to diminish geographically correlated errors, as shown in previous studies. Optimal cut-off degrees and orders are determined for the destriping filter to maximize the signal to noise ratio. The halfwidth of the Gaussian filter is shown to significantly affect the sensitivity of the GRACE data (with respect to upper mantle viscosity and ice loading history). Therefore, the halfwidth should be selected based on the desired sensitivity.It is shown that increase in water storage in an area south west of Hudson Bay, from the summer of 2003 to the summer of 2006, contributes up to half of the maximum estimated gravity rate. Hydrology models differ in the predictions of the secular change in water storage, therefore even 4-year trend estimates are influenced by the uncertainty in water storage changes. Land ice melting in Greenland and Alaska has a non-negligible contribution, up to one-fourth of the maximum gravity rate.The estimated secular gravity rate shows two distinct peaks that can possibly be due to two domes in the former Pleistocene ice cover: west and south east of Hudson Bay. With a limited number of models, a better fit is obtained with models that use the ICE-3G model compared to the ICE-5G model. However, the uncertainty in interannual variations in hydrology models is too large to constrain the ice loading history with the current data span. For future work in which GRACE will be used to constrain ice loading history and the Earth's radial viscosity profile, it is important to include realistic uncertainty estimates for hydrology models and land ice melting in addition to the effects of lateral heterogeneity. 相似文献