首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   14篇
  国内免费   2篇
测绘学   3篇
大气科学   44篇
地球物理   63篇
地质学   103篇
海洋学   18篇
天文学   16篇
自然地理   22篇
  2020年   7篇
  2019年   2篇
  2018年   6篇
  2017年   7篇
  2016年   20篇
  2014年   6篇
  2013年   12篇
  2012年   5篇
  2011年   13篇
  2010年   15篇
  2009年   16篇
  2008年   14篇
  2007年   11篇
  2006年   6篇
  2005年   8篇
  2004年   10篇
  2002年   7篇
  2001年   10篇
  2000年   8篇
  1999年   9篇
  1998年   10篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1990年   2篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1969年   2篇
  1968年   3篇
  1964年   1篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
  1956年   1篇
  1949年   1篇
  1937年   1篇
排序方式: 共有269条查询结果,搜索用时 484 毫秒
71.
Paleoproterozoic Xuwujia gabbronorites in the northern margin of the North China craton occur as dykes, sills and small plutons intruded into khondalite (aluminous paragneisses, sedimentary protoliths deposited at ca. 2.0–1.95 Ga), and as numerous entrained bodies and fragments of variable scales in the Liangcheng granitoids (ca. 1.93–1.89 Ga). These gabbronoritic dykes are present at all locations where ca. 1.93–1.92 Ga ultra-high-temperature metamorphism is recorded in the khondalite. A gabbronorite sample from the Hongmiaozi dyke gives zircon 207Pb/206Pb mean ages of 1954 ± 6 Ma (core domains) and 1925 ± 8 Ma (rim domains). These ages, as well as previously reported ages, constrain the age of mafic magmatism to be at ca. 1.96–1.92 Ga (∼1.93 Ga). One sample from the Xigou gabbro intruded by the Liangcheng granitoids gives a zircon 207Pb/206Pb mean age of 1857 ± 4 Ma, which is interpreted as the age of a metamorphic overprint. The Xuwujia gabbronorites comprise mainly gabbronorite compositions, as well as some norite, olivine gabbronorite, monzonorite, quartz gabbronorite, and quartz monzonorite. Chemically, they are tholeiitic and can be divided into two groups: a high-Mg group (6.2–22.9 wt.% MgO) and a relatively low-Mg group (2.2–5.7 wt.% MgO). The high-Mg group shows negative Eu-anomalies (Eu/Eu* = 0.53–0.72), slight light rare earth element enrichment (La/YbN = 0.56–1.53), and small negative anomalies in high field-strength elements. The ?Nd (t = 1.93 Ga) values vary from +0.3 to +2.4. The low-Mg group shows varied Eu-anomalies (Eu/Eu* = 0.48–1.05), and is enriched in light rare earth elements (La/YbN = 1.51–11.98). The majority shows negative anomalies in high field-strength elements (e.g., Th, Nb, Zr, and Ti). Initial ?Nd (at 1.93 Ga) values for low-Mg gabbronorites vary from −5.0 to 0. The Xuwujia gabbronorites possibly experienced assimilation of crust, and fractional crystallization of initially olivine and hypersthene (the high-Mg group), and then olivine, clinopyroxene, and plagioclase (the low-Mg group). The slightly younger Liangcheng granitoids consist of garnet-bearing granite, granodiorite and quartz-rich granitic compositions. They are intermediate to felsic calc-alkaline rocks, thought to be derived from surrounding metasedimentary crust. Xigou gabbro could represent early cumulates. The granitoids have relatively high-Mg numbers (up to 54), and show some chemical affinities with the gabbronorites, which could have resulted from incorporation of gabbronoritic melts. The occurrence and chemical variations of the Xuwujia gabbronorites and Liangcheng granitoids can be interpreted to have resulted from crust–mantle interaction, with mingling and partial mixing of mantle (gabbronoritic) and crustal (granitic) melts. The Xuwujia gabbronorites originated from a mantle region with high potential temperatures (∼1550 °C), possibly associated with a plume or more likely a ridge-subduction-related mantle upwelling event. They could have had extremely high primary intrusion temperatures (up to 1400 °C). Emplacement of these magmas was likely responsible for the extensive crustal anatexis (Liangcheng granitoids) and the local ultra-high-temperature metamorphism. These sequences may have followed ca. 1.95 Ga continent–continent (arc?) juxtaposition and were themselves followed by significant regional uplift and exhumation in the northern margin of the North China craton.  相似文献   
72.
The aim of this study is to improve our knowledge of the processes that lead to clay smear during faulting of a layered sand-clay sequence in an analogue sandbox model. We carefully characterized mechanical properties of the materials used by a series of geotechnical tests. Displacement field was quantified using PIV (Particle Image Velocimetry). The model is water-saturated to allow the deformation of wet clay and sand in one experiment comprising a sand package with a horizontal layer of clay above a predefined rigid basement fault. The thickness and rigidity of the clay layer are the parameters varied in this study. The model shows a range of structures that are related to competence contrast between sand and different clay types. Results show ductile shearing of soft clay with a transition to brittle fracturing of stiff clay accompanied by the formation of rotating clay blocks in the fault zone. Localized deformation is observed through time showing (i) the propagation of one active fault migrating laterally through the sediment package, and (ii) the formation of a stable prism between two or more active faults that gets progressively smaller with minor rotation of the hanging wall fault. Continuous clay smear is observed resulting from the lateral injection of clay as well as from a reworked mixture of sand and clay.  相似文献   
73.
74.
Three paleodrainage groups are proposed for profiles of the Farmdale–Sangamon soil complex in south-central Indiana. The groups (good, intermediate, and poor) are differentiated on the basis of matrix colors and color patterns. Genetic support for the groupings is provided by morphological trends still evident following > 100,000 yr of pedogenesis and burial by late Wisconsinan loess. Depth of carbonate leaching, solum thickness, and argillic horizon thickness all decrease with poorer drainage. Clay mineralogy also reflects paleodrainage. Illite degradation is intense in all profiles, but profiles with good drainage have poorly crystalline, interstratified expandable minerals, while well crystalline smectites dominate in profiles with poor drainage. Remanent aggregation in former A horizons is stronger in more poorly drained profiles, while the effects of structural overprinting from the modern soil increase with better modern drainage. Soil morphology, mineralogy, and parent material–paleolandscape position of Sangamon profiles are all internally consistent with color development under soil hydrological conditions during the last interglacial to glacial transition. The occurrence frequency of each drainage group indicates that the Sangamon soilscape was better drained than now, and morphology and clay mineral evidence suggests that areas with poor drainage did not experience the extreme seasonal groundwater shifts that the modern landscape experiences.  相似文献   
75.
The Heimefrontfjella mountains, Western Dronning Maud Land (East Antarctica), are dominantly composed of Grenville-aged (≈ 1.1 Ga) rocks, which were reworked during the Pan -African orogeny at ≈500 Ma. Three discontinuity-bounded Grenville-aged terranes have been recognized namely (from north to south) the Kottas, Sivorg and Vardeklettane terranes. The terranes contain their own characteristic lithological assemblages, although each is made up of an early supracrustal sequence of metavolcanic and/or metasedimentary gneisses, intruded by various (predominantly granitoid) suites. No older basement upon which the protoliths of these older gneisses were deposited has been recognized. In each terrane the older layered gneisses were intruded by various plutonic suites ranging in age from ≈ 1150 to ≈1000 Ma. The Vardeklettane terrane is characterized by abundant charnockites and two-pyroxene granulite facies parageneses in metabasites, whereas the Sivorg and Kottas terranes were metamorphosed to amphibolite facies grade. P-T estimates show that peak metamorphic conditions changed from ≈600°C at 8 kbar in the south, to ≈700 °C at 4 kbar in the northern Sivorg terrane. Regional greenschist retrogression of high-grade assemblages may be of Pan-African age. The Heimefrontfjella terranes were juxtaposed and pervasively deformed during a complex and protracted period of E-W collision orogenesis in a transpressive regime at ≈ 1.1 Ga. This is manifest as early, gently dipping thrust-related shear fabrics (D1), succeeded by the initiation of an important (D2) steep dextral shear zone (Heimefront shear zone, HSZ), during which the early fabrics and structures were steepened and rotated in an anticlockwise sense. The HSZ is a curvilinear structure which changes from a dextral oblique strike-slip lateral ramp in the north to a steep dip-slip frontal ramp in the south, where it forms the boundary between the Sivorg and Vardeklettane terranes. The Pan-African event is manifested as discrete, low- to medium-temperature ductile to brittle shears (D3) and numerous K/Ar cooling ages.  相似文献   
76.
77.
78.
The 1.1 Ga Natal Metamorphic Province (NMP) lies at the heart of a world-wide system of Grenville age mobile belts which welded early continental fragments into the Mesoproterozoic supercontinent of Rodinia. Structural analysis of the three tectonostratigraphic terranes in Natal reveals a kinematic history characterized by prolonged NE-SW plate convergence, manifested as early thrust tectonics and later pervasive sinistral transcurrent shearing. Consequently, superimposed on the Natal tectonostratigraphic terranes is a kinematic subdivision into tectonic domains which are characterized by shallow, south-west dipping foliations, south-west plunging stretching lineations and north-east verging recumbent folds, and by younger domains with subvertical shear fabrics, subhorizontal to oblique lineations and folding about near-vertical axes. Microtextural and petrographic analyses suggest that the later shearing took place under high temperature conditions of at least 500°C. The recorded kinematic indicators suggest that early subhorizontal compressional tectonics gave rise to tectonic thickening of the crust, progressively followed by oblique transcurrent shearing within a transpressional regime. The shearing event in the southern arc-related terranes was associated with the widespread emplacement of late kinematic rapakivi granite -charnockite plutons, with A-type granite geochemical characteristics. This orogenic event took place around 1100 Ma during prolonged NE-SW collisional convergence along the southern margin of the stable Archean foreland, which lay to the north.  相似文献   
79.
Data from the 1996 ASGAMAGE experiment, performed in the southern North Sea at research platform Meetpost Noordwijk (MPN), are analysed for the parameters affecting the momentum flux. The stress turns out to be quadratically related to the 10-m wind speed and linearly to the wind speed at a wavelength related level. The Charnock parameter (dimensionless roughness length) shows a pronounced correlation with wave age. This implies, due to a coupling between wave age and the steepness of the waves, a connection between the stress and the steepness. We find that our North Sea results are consistent withopen ocean observations. For a given wind speed the mean stress at MPN turns out to be higher because the wave age there is in general lower. We define and give an expression for a drag coefficient at a wavelength related level that can be calculated straightforwardly from the wave age and then reduced to a standard level.  相似文献   
80.
The effect of mesoscale eddy variability on the Japan/East Sea mean circulation is examined from satellite altimeter data and results from the Naval Research Laboratory Layered Ocean Model (NLOM). Sea surface height variations from the Geosat-Exact Repeat Mission and TOPEX/POSEIDON altimeter satellites imply geostrophic velocities. At the satellite crossover points, the total velocity and the Reynolds stress due to geostrophic mesoscale turbulence are calculated. After spatial interpolation the momentum flux and effect on geostrophic balance indicates that the eddy variability aids in the transport of the Polar Front and the separation of the East Korean Warm Current (EKWC). The NLOM results elucidate the impact of eddy variability on the EKWC separation from the Korean coast. Eddy variability is suppressed by either increasing the model viscosity or decreasing the model resolution. The simulations with decreased eddy variability indicate a northward overshoot of the EKWC. Only the model simulation with sufficient eddy variability depicts the EKWC separating from the Korean coast at the observed latitude. The NLOM simulations indicate mesoscale influence through upper ocean-topographic coupling. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号