首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   9篇
  国内免费   1篇
测绘学   1篇
大气科学   12篇
地球物理   31篇
地质学   31篇
海洋学   2篇
天文学   1篇
自然地理   6篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   10篇
  2009年   5篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
71.
Natural damming of upland river systems, such as landslide or lava damming, occurs worldwide. Many dams fail shortly after their creation, while other dams are long‐lived and therefore have a long‐term impact on fluvial and landscape evolution. This long‐term impact is still poorly understood and landscape evolution modelling (LEM) can increase our understanding of different aspects of this response. Our objective was to simulate fluvial response to damming, by monitoring sediment redistribution and river profile evolution for a range of geomorphic settings. We used LEM LAPSUS, which calculates runoff erosion and deposition and can deal with non‐spurious sinks, such as dam‐impounded areas. Because fluvial dynamics under detachment‐limited and transport‐limited conditions are different, we mimicked these conditions using low and high erodibility settings, respectively. To compare the relative impact of different dam types, we evaluated five scenarios for each landscape condition: one scenario without a dam and four scenarios with dams of increasing erodibility. Results showed that dam‐related sediment storage persisted at least until 15 000 years for all dam scenarios. Incision and knickpoint retreat occurred faster in the detachment‐limited landscape than in the transport‐limited landscape. Furthermore, in the transport‐limited landscape, knickpoint persistence decreased with increasing dam erodibility. Stream capture occurred only in the transport‐limited landscape due to a persisting floodplain behind the dam and headward erosion of adjacent channels. Changes in sediment yield variation due to stream captures did occur but cannot be distinguished from other changes in variation of sediment yield. Comparison of the model results with field examples indicates that the model reproduces several key phenomena of damming response in both transport‐limited and detachment‐limited landscapes. We conclude that a damming event which occurred 15 000 years ago can influence present‐day sediment yield, profile evolution and stream patterns. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
72.
Future climate projections from general circulation models (GCMs) predict an acceleration of the global hydrological cycle throughout the 21st century in response to human-induced rise in temperatures. However, projections of GCMs are too coarse in resolution to be used in local studies of climate change impacts. To cope with this problem, downscaling methods have been developed that transform climate projections into high resolution datasets to drive impact models such as rainfall-runoff models. Generally, the range of changes simulated by different GCMs is considered to be the major source of variability in the results of such studies. However, the cascade of uncertainty in runoff projections is further elongated by differences between impact models, especially where robust calibration is hampered by the scarcity of data. Here, we address the relative importance of these different sources of uncertainty in a poorly monitored headwater catchment of the Ecuadorian Andes. Therefore, we force 7 hydrological models with downscaled outputs of 8 GCMs driven by the A1B and A2 emission scenarios over the 21st century. Results indicate a likely increase in annual runoff by 2100 with a large variability between the different combinations of a climate model with a hydrological model. Differences between GCM projections introduce a gradually increasing relative uncertainty throughout the 21st century. Meanwhile, structural differences between applied hydrological models still contribute to a third of the total uncertainty in late 21st century runoff projections and differences between the two emission scenarios are marginal.  相似文献   
73.
Although the UN and EU focus their climate policies on the prevention of a 2 °C global mean temperature rise, it has been estimated that a rise of at least 4?°C is more likely. Given the political climate of inaction, there is a need to instigate a bottom-up approach so as to build domestic support for future climate treaties, empower citizens, and motivate leaders to take action. A review is provided of the predominant top-down cap-and-trade policies in place – the Kyoto Protocol and EU Emissions Trading Scheme (EU ETS) – with a focus on the grandfathering of emissions entitlements and the possibility of offsetting emissions. These policies are evaluated according to two criteria of justice and it is concluded that they fail to satisfy them. Some suggestions as to how the EU ETS can be improved so as to enable robust climate action are also offered.

Policy relevance

The current supranational climate policy has not been successful and global leaders have postponed the adoption of a meaningful successor to the Kyoto Protocol. In view of this inaction, bottom-up approaches with regard to climate policy should be further developed. It is argued that two of the main top-down policies, grandfathering and offsetting, impede the avowed goals of EU climate policy and pose significant ethical dilemmas with regard to participatory and intergenerational justice. In order to provide a more robust EU climate policy, the EU should inter alia provide a long-term perspective for investors, reduce the volatility of the carbon price, and prepare for the possibility of carbon leakage.  相似文献   
74.
75.
Despite its environmental and scientific significance, predicting gully erosion remains problematic. This is especially so in strongly contrasting and degraded regions such as the Horn of Africa. Machine learning algorithms such as random forests (RF) offer great potential to deal with the complex, often non-linear, nature of factors controlling gully erosion. Nonetheless, their applicability at regional to continental scales remains largely untested. Moreover, such algorithms require large amounts of observations for model training and testing. Collecting such data remains an important bottleneck. Here we help to address these gaps by developing and testing a methodology to simulate gully densities across Ethiopia, Eritrea and Djibouti (total area: 1.2 million km2). We propose a methodology to quickly assess the gully head density (GHD) for representative 1 km2 study sites by visually scoring the presence of gullies in Google Earth and then converting these scores to realistic estimates of GHD. Based on this approach, we compiled GHD observations for 1,700 sites. We used these data to train sets of RF regression models that simulate GHD at a 1 km2 resolution, based on topographic/geomorphic, land cover, soil and rainfall conditions. Our approach also accounts for uncertainties in GHD observations. Independent validations showed generally acceptable simulations of regional GHD patterns. We further show that: (i) model performance strongly depends on the amount of training data used, (ii) large prediction errors mainly occur in areas where also the predicted uncertainty is large and (iii) collecting additional training data for these areas results in more drastic model performance improvements. Analyses of the feature importance of predictor variables further showed that patterns of GHD across the Horn of Africa strongly depend on NDVI and annual rainfall, but also on normalized steepness index (ksn) and distance to rivers. Overall, our work opens promising perspectives to assess gully densities at continental scales. © 2020 John Wiley & Sons, Ltd.  相似文献   
76.
In this paper, we consider the upscaling of Hooke's law and its parameters on the fine scale, to a similar law with upscaled parameters on a larger scale. It is assumed that the fine scale material properties of the rock are imperfectly layered. In the governing equations, the deviations from perfect layering introduce a small parameter that can be used in perturbation series expansions for the stress, the strain, and the displacement. In the approximation of order zero the upscaled compliance matrix contains the well-known Backus parameters; this approximation holds exactly for a perfect layering. However, many natural rock types are imperfectly layered and in that case the approximation of order zero may not be sufficiently accurate. Therefore, we consider also the first order corrections. The derivation and results are presented both for the most general case and for the much simpler case in which the fine scale Poisson ratio may be assumed constant. From thermodynamic principles, it follows that the compliance tensor is symmetric on the fine scale. However, it is shown that the argument for symmetry cannot be extended to upscaled rigidities. One of the most important conclusions is that upscaled compliance tensors are nonsymmetric when there are trends in the deviations from perfect layering.  相似文献   
77.
Many studies of foreland basins have recognized a hierarchical organization in the stacking of sequences deposited by axial‐deltaic and alluvial fan systems. The hierarchy is often explained in terms of the competing control of eustasy and pulsed tectonic subsidence and the different frequencies at which these processes operate. Unravelling the relative contributions of tectonic and eustatic controls on the sequence stacking pattern is a fundamental question in foreland basin analysis, yet this is difficult because of the lack of independent stratigraphic evidence. In this study, a three‐dimensional numerical model is presented, which aids in the interpretation of alluvial successions in foreland basins filled by transverse and axial depositional systems, under conditions of variable tectonism and eustatic sea‐level change. The tectono‐sedimentary model is capable of simulating the hierarchical stratigraphic response to both eustatic and tectonic forcing, and is of higher resolution than previous models of foreland basin filling. Numerical results indicate that the onset of tectonic activity is reflected by rapid retrogradation of both depositional systems and by widespread flooding and onlap of carbonate sediments. Syntectonic fluvial patterns on the axial‐deltaic plain are dominated by bifurcating channels, swiftly relocating in response to the general rise in relative sea level induced by flexural subsidence. The resulting surface morphology of the axial delta is convex upwards. Syntectonic eustatic sea‐level fluctuations result in parasequence‐scale packages of retrograding and prograding fan and delta sediments bounded by minor flooding surfaces and type 2 sequence boundaries. Incised channels are rare within the syntectonic parasequences and are formed only during phases of tectonic quiescence when eustatic falls are no longer compensated by the subsidence component in the rise in relative sea level. Suites of amalgamating, axial channels corresponding to multiple eustatic falls delineate the resulting type 1 unconformities. Coarse‐grained, incised‐channel fills are found in the zone between the alluvial fan fringes and the convex‐upward body of the axial delta, as the axial streams tend to migrate towards this zone of maximum accommodation.  相似文献   
78.
The Changjiang (Yangtze) estuarine and coastal waters are characterized by suspended sediments over a wide range of concentrations from 20 to 2,500 mg l−1. Suspended sediment plays important roles in the estuarine and coastal system and environment. Previous algorithms for satellite estimates of suspended sediment concentration (SSC) showed a great limitation in that only low to moderate concentrations (up to 50 mg l−1) could be reliably estimated. In this study, we developed a semi-empirical radiative transfer (SERT) model with physically based empirical coefficients to estimate SSC from MERIS data over turbid waters with a much wider range of SSC. The model was based on the Kubelka–Munk two-stream approximation of radiative transfer theory and calibrated using datasets from in situ measurements and outdoor controlled tank experiments. The results show that the sensitivity and saturation level of remote-sensing reflectance to SSC are dependent on wavelengths and SSC levels. Therefore, the SERT model, coupled with a multi-conditional algorithm scheme adapted to satellite retrieval of wide-range SSC, was proposed. Results suggest that this method is more effective and accurate in the estimation of SSC over turbid waters.  相似文献   
79.
In structural geology, viscous creep is generally recognized as the major deformation mechanism in the folding of rock layers through geological time scales of hundreds of thousands of years. Moreover, since deformation of rock salt by creep takes already place on relatively small time scales—weeks to months, say—creep is a relevant phenomenon when studying salt mining, notably the convergence of mine cavities and the land subsidence caused by it. While creep is the dominant process on relatively long time scales, elasticity plays a dominant role in processes that take place on relatively short time scales. The elastic response to a stress is a displacement; the shape of the rock is deformed instantaneously with respect to its initial shape. However, the viscous response of a rock to a stress is a relatively low velocity in the order of millimeters per months or years, say. In this paper we consider the two deformation phenomena creep and elasticity. In general, elasticity is a compressible phenomenon, while creep is incompressible. Here we approximate creep by the introduction of a negligibly small amount of compressibility, which makes creep velocity calculations similar to conventional elastic displacement calculations. Using this procedure, a standard finite element package for elasticity can be applied to viscous problems, also in combination with elasticity. The method has been demonstrated to upscaling of creep viscosities.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号