首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   571篇
  免费   13篇
  国内免费   18篇
测绘学   9篇
大气科学   95篇
地球物理   119篇
地质学   156篇
海洋学   173篇
天文学   27篇
综合类   9篇
自然地理   14篇
  2023年   2篇
  2022年   6篇
  2021年   14篇
  2020年   12篇
  2019年   8篇
  2018年   29篇
  2017年   34篇
  2016年   43篇
  2015年   41篇
  2014年   36篇
  2013年   37篇
  2012年   34篇
  2011年   53篇
  2010年   43篇
  2009年   35篇
  2008年   26篇
  2007年   24篇
  2006年   25篇
  2005年   20篇
  2004年   12篇
  2003年   18篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   8篇
  1998年   2篇
  1997年   6篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有602条查询结果,搜索用时 109 毫秒
511.
Adaptive GPS/INS integration for relative navigation   总被引:1,自引:0,他引:1  
Relative navigation based on GPS receivers and inertial measurement units is required in many applications including formation flying, collision avoidance, cooperative positioning, and accident monitoring. Since sensors are mounted on different vehicles which are moving independently, sensor errors are more variable in relative navigation than in single-vehicle navigation due to different vehicle dynamics and signal environments. In order to improve the robustness against sensor error variability in relative navigation, we present an efficient adaptive GPS/INS integration method. In the proposed method, the covariances of GPS and inertial measurements are estimated separately by the innovations of two fundamentally different filters. One is the position-domain carrier-smoothed-code filter and the other is the velocity-aided Kalman filter. By the proposed two-filter adaptive estimation method, the covariance estimation of the two sensors can be isolated effectively since each filter estimates its own measurement noise. Simulation and experimental results demonstrate that the proposed method improves relative navigation accuracy by appropriate noise covariance estimation.  相似文献   
512.
513.
Natural Hazards - Recent decades have seen an increasing recognition and consensus among researchers and planners in disaster management in the need to foster social learning...  相似文献   
514.
Yoon  Tae-Ho  Bae  Jaeyong  Kang  Hye-Eun  Choi  Jung Hwa  Lee  Chung Il  Park  Won-gyu  Kim  Hyun-Woo 《Ocean Science Journal》2015,50(1):61-75
Ocean Science Journal - The molecular markers to distinguish different larval stages have various applications in ecological studies. Using the differential display RT-PCR technique, we isolated...  相似文献   
515.
516.
517.
A comparison between half‐hourly and daily measured and computed evapotranspiration (ET) using three models of different complexity, namely, the Priestley–Taylor (P‐T), the reference Penman–Monteith (P‐M) and the Common Land Model (CLM), was conducted using three AmeriFlux sites under different land cover and climate conditions (i.e. arid grassland, temperate forest and subhumid cropland). Using the reference P‐M model with a semiempirical soil moisture function to adjust for water‐limiting conditions yielded ET estimates in reasonable agreement with the observations [root mean square error (RMSE) of 64–87 W m?2 for half‐hourly and RMSE of 0.5–1.9 mm day?1 for daily] and similar to the complex Common Land Model (RMSE of 60–94 W m?2 for half‐hourly and RMSE of 0.4–2.1 mm day?1 for daily) at the grassland and cropland sites. However, the semiempirical soil moisture function was not applicable particularly for the P‐T model at the forest site, suggesting that adjustments to key model variables may be required when applied to diverse land covers. On the other hand, under certain land cover/environmental conditions, the use of microwave‐derived soil moisture information was found to be a reliable metric of regional moisture conditions to adjust simple ET models for water‐limited cases. Further studies are needed to evaluate the utility of the simplified methods for different landscapes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
518.
Nutrients, chlorophyll-a (Chl-a), and environmental conditions were extensively investigated in the northern East China Sea (ECS) near Cheju Island during five research cruises from 2003 to 2007. In the eastern part of the study area, surface waters were characterized only by the Tsushima Current Water (TCW) during all five cruises. However, the western surface waters changed with season and were characterized by the Yellow Sea Cold Water (YSCW) in spring, the Changjiang Diluted Water (CDW) in summer, and the Yellow Sea Mixed Water (YSMW) in autumn. In spring and autumn, relatively high concentrations of nitrate and phosphate were observed in the surface waters in the western part of the study area, where vertical mixing brought large supplies of nutrients from deep waters. Changes in wind direction occasionally varied the inflow of the Changjiang plume in summer, clearly causing the annual variation in surface nitrate and phosphate concentrations in summer. In summer, the surface distribution of nitrate and phosphate did not coincide with that of silicate in the study area, which probably resulted from the significant drop in the Si:N ratio in the Changjiang plume since construction of the Three Gorges Dam (TGD). Despite large temporal and spatial variations in surface Chl-a concentrations, depth-integrated Chl-a concentrations exhibited little variation temporally and spatially. In the study area, surface Chl-a concentration did not well reflect the standing stocks of phytoplankton. The vertical distribution of Chl-a showed large temporal and spatial variations, and the main factor controlling the vertical distribution of Chl-a in summer was the availability of nitrate. The thermohaline front may play an important role for accumulation of phytoplankton biomass in spring and autumn.  相似文献   
519.
In the late 1980s, dramatic increases in water use caused over‐exploitation of groundwater resources and deterioration of water quality in Seoul metropolitan city. To monitor changes in quantity of groundwater resources and their quality, the metropolitan government established a local groundwater monitoring network in 1997 consisting of 119 monitoring wells. Groundwater resources in the urban area were affected by various human activities, including underground construction such as subways, pumping for public or private water use, leaky sewer systems and pavements. The variation patterns of the groundwater levels were mainly classified into four types, reflecting natural recharge due to rainfall events during the wet season, artificial recharge from leaky sewer or water supply systems, and heavy groundwater pumping for drainage or flood control purposes at underground construction sites. Significantly decreasing trends of groundwater levels in the suburbs of Seoul indicate groundwater use for various agricultural activities. Subway construction lowered the water level by an average of 25 m. Electrical conductivity values showed a wide range, from 100 to 1800 µS/cm (mean 470 µS/cm). Groundwater temperature generally showed a stable pattern, except for some sensitive increases at relatively shallow monitoring wells. Detailed analysis of the monitored groundwater data would provide some helpful implications for optimal and efficient management of groundwater resources in this metropolitan city. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
520.
The horizontal structure of deep mean circulation and its seasonal variability in the Japan/East Sea (JES) were studied using profiling float and moored current meter data. The deep circulation in the Japan Basin (JB) flows cyclonically, basically following f/H contours. The correlation between the directions of deep current and f/H contour increases as |▿(f/H)| increases, reaching remarkably high correlation coefficient (>0.8) values in steep slope regions in the JB. In contrast to the JB, the deep mean circulation in the Ulleung/Tsushima Basin (UTB) is generally weak and cyclonic accompanied by sub-basin-scale cyclonic and anticyclonic eddies. The UTB shows a poorer correlation between directions of deep current and f/H contours than other basins. The time-space averaged deep mean current is about 2.8 cm/s and the volume transport in the deep layer (800 m to bottom) in the JB reaches about 10 Sv (10 × 106 m3s−1), which is about four times greater than the inflow transport through the Tsushima Straits. A salient feature is that the amplitude of deep mean current in the JB reveals a remarkable seasonal variation with a maximum in March and minimum in October. The annual range of the seasonal variation is about 30% of the mean velocity, whereas that in the southern JES (UTB and Yamato Basin) is weak.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号