首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   17篇
  国内免费   19篇
测绘学   11篇
大气科学   45篇
地球物理   112篇
地质学   121篇
海洋学   124篇
天文学   32篇
综合类   18篇
自然地理   7篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2019年   18篇
  2018年   17篇
  2017年   20篇
  2016年   29篇
  2015年   17篇
  2014年   25篇
  2013年   34篇
  2012年   20篇
  2011年   33篇
  2010年   34篇
  2009年   24篇
  2008年   24篇
  2007年   18篇
  2006年   33篇
  2005年   23篇
  2004年   10篇
  2003年   20篇
  2002年   11篇
  2001年   8篇
  2000年   5篇
  1999年   9篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1987年   3篇
  1986年   3篇
  1971年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有470条查询结果,搜索用时 0 毫秒
431.
In current seismic design, structures that are essential for post‐disaster recovery, and hazardous facilities are classified as risk category IV and are designed with higher importance factors and stringent drift limits. These structures are expected to perform better in an earthquake event because a larger base shear and more stringent drift limit are used. Although this provision has been in the seismic design code over the last three decades, few studies have investigated the performance of essential structures. The aim of this study is to quantify the impact of higher importance factors and stringent drift limits on the seismic performance of steel moment resisting frames. A total of 16 steel structures are designed for Los Angeles and Seattle. Different risk categories are used for the design. The effects of the risk categories on the structural periods, and thus on the seismic force demand, are investigated. A suite of inelastic time history analyses are carried out to understand the probability of exceeding a specified limit state when the structures are subjected to different levels of earthquake events. The results show that the periods of the structures in risk category IV decrease by a factor of 0.5 to 0.8, and the strengths increase by a factor of 1.5 to 3.2. Seismic fragility analysis shows that the structures in risk category IV generally satisfy the probabilistic performance objectives. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
432.
This paper aims to provide a guideline for numerical modeling of reinforced concrete (RC) frame elements for the seismic performance assessment of a structure. Several types of numerical models of RC frame elements are available in nonlinear structural analysis packages. Because the numerical models are formulated based on different assumptions and theories, the models' accuracy, computing time, and applicability vary, which poses a great difficulty to practicing engineers and limits their confidence in the analysis results. In this study, the applicability of five representative numerical models of RC frame elements is evaluated through comparison with 320 experimental results available from the Pacific Earthquake Engineering Research column database. The accuracy of a numerical model is evaluated according to its initial stiffness, peak strength, and energy dissipation capacity of the global responses. In addition, a parametric study of a cantilever RC column subjected to earthquake excitation is carried out to systematically evaluate the consequence of the adopted numerical models on the maximum inelastic structural responses. It is found from this study that the accuracy of the numerical models is sensitive to shear force demand–capacity ratio. If a structural period is short and the structure is shear critical, the use of numerical models that can explicitly capture the shear deformation and failure is suggested. If the structural period is long, the selection of a numerical model does not greatly influence the global response of the structure. The paper also presents statistical parameters of each numerical model, which can be used for probabilistic seismic performance assessment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
433.
The aim of this study is to analyze hydrothermal gold–silver mineral deposits potential in the Taebaeksan mineralized district, Korea, using an artificial neural network (ANN) and a geographic information system (GIS) environment. A spatial database considering 46 Au and Ag deposits, geophysical, geological, and geochemical data was constructed for the study area using the GIS. The geospatial factors were used with the ANN to analyze mineral potential. The Au and Ag mineral deposits were randomly divided into a training set (70%) to analyze mineral potential using ANN and a test set (30%) to validate predicted potential map. Four different training datasets determined from likelihood ratio and weight of evidence models were applied to analyze and validate the effect of training. Then, the mineral potential index (MPI) was calculated using the trained back-propagation weights, and mineral potential maps (MPMs) were constructed from GIS data for the four training cases. The MPMs were then validated by comparison with the test mineral occurrences. The validation results gave respective accuracies of 73.06, 73.52, 70.11, and 73.10% for the training cases. The comparison results of some training cases showed less sensitive to training data from likelihood ratio than weight of evidence. Overall, the training cases selected from 10% area with low and high index value of MPML and MPMW gave higher accuracy (73.52 and 73.10%) for MPMs than those (73.06 and 70.11%, respectively) from known deposits and 10% area with low index value of MPIL and MPIW.  相似文献   
434.
435.
436.
Due to their complementary features of GPS and INS, the GPS/INS integrated navigation system is increasingly being used for a variety of commercial and military applications. An attitude determination GPS (ADGPS) receiver, with multiple antennas, can be more effectively integrated with a low-cost IMU since the receiver gives not only position and velocity data but also attitude data. This paper proposes a low-cost attitude determination GPS/INS integrated navigation system. The proposed navigation system comprises an ADGPS receiver, a navigation computer unit (NCU), and a low-cost commercial MEMS IMU. The navigation software includes a fault detection and isolation (FDI) algorithm for integrity. In order to evaluate the performance of the proposed navigation system, two flight tests have been performed using a small aircraft. The first flight test confirmed the fundamental operation of the proposed navigation system and the effectiveness of the FDI algorithm. The second flight test evaluated the performance of the proposed navigation system and demonstrated the benefit of GPS attitude information in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation unit gives reliable navigation performance even when anomalous GPS data is provided and gives better navigation performance than a conventional GPS/INS unit.  相似文献   
437.
438.
439.
We analyze the problem of preventing biological invasions caused by ships transporting internationally traded goods between countries and continents. Specifically, we ask the following question: should a port manager have a small number of inspectors inspect arriving ships less stringently or should this manager have a large number of inspectors inspect the same ships more stringently? We use a simple queuing-theoretic framework and show that if decreasing the economic cost of regulation is very important then it makes more sense for the port manager to choose the less stringent inspection regime. In contrast, if reducing the damage from biological invasions is more salient then the port manager ought to pick the more stringent inspection regime.  相似文献   
440.
This study constructs a hazard map for ground subsidence around abandoned underground coal mines (AUCMs) at Samcheok City in Korea using a probability (frequency ratio) model, a statistical (logistic regression) model, and a Geographic Information System (GIS). To evaluate the factors related to ground subsidence, an image database was constructed from a topographical map, geological map, mining tunnel map, Global Positioning System (GPS) data, land use map, lineaments, digital elevation model (DEM) data, and borehole data. An attribute database was also constructed from field investigations and reports on the existing ground subsidence areas at the study site. Nine major factors causing ground subsidence were extracted from the probability analysis of the existing ground subsidence area: (1) depth of drift; (2) DEM and slope gradient; (3) groundwater level, permeability, and rock mass rating (RMR); (4) lineaments and geology; and (5) land use. The frequency ratio and logistic regression models were applied to determine each factor’s rating, and the ratings were overlain for ground subsidence hazard mapping. The ground subsidence hazard map was then verified and compared with existing subsidence areas. The verification results showed that the logistic regression model (accuracy of 95.01%) is better in prediction than the frequency ratio model (accuracy of 93.29%). The verification results showed sufficient agreement between the hazard map and the existing data on ground subsidence area. Analysis of ground subsidence with the frequency ratio and logistic regression models suggests that quantitative analysis of ground subsidence near AUCMs is possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号