首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   17篇
  国内免费   19篇
测绘学   11篇
大气科学   45篇
地球物理   112篇
地质学   121篇
海洋学   124篇
天文学   32篇
综合类   18篇
自然地理   7篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2019年   18篇
  2018年   17篇
  2017年   20篇
  2016年   29篇
  2015年   17篇
  2014年   25篇
  2013年   34篇
  2012年   20篇
  2011年   33篇
  2010年   34篇
  2009年   24篇
  2008年   24篇
  2007年   18篇
  2006年   33篇
  2005年   23篇
  2004年   10篇
  2003年   20篇
  2002年   11篇
  2001年   8篇
  2000年   5篇
  1999年   9篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1987年   3篇
  1986年   3篇
  1971年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有470条查询结果,搜索用时 265 毫秒
321.
Jeju Island is a volcanic island composed predominantly of permeable basalts. The island is poor in surface water but abundant in groundwater. No actual perennial streams exist and the water resources on the island are dependent almost entirely on groundwater. The groundwater bodies on the island are classified into three general categories: high level, basal and parabasal groundwaters. The parabasal groundwater is further subdivided into lower and upper parabasal groundwaters due to the position of the Seogwipo Formation, which is made up of sedimentary rocks with a low permeability. The distribution of each groundwater type was evaluated through analyses of the spatial distribution of the Seogwipo Formation and the hydraulic gradient of the groundwater. Basal groundwater emerges extensively along the coast of the eastern sector, less commonly along the coast of the western sector. Parabasal groundwater occurs extensively over most of the island except for the southern sector, where it occurs only locally in the coastal area. This paper presents a summary of several studies on the occurrence and features of groundwater resources on Jeju Island, the largest island in Korea.  相似文献   
322.
The Maggol Limestone of Ordovician age was deposited in the Taebaeksan (Taebacksan) Basin which occupies the northeastern flank of the Okcheon (Ogcheon) Belt of South Korea. Carbonate facies analysis in conjunction with conodont biostratigraphy suggests that an overall regression toward the top of the Maggol Limestone probably culminated in subaerial exposure of platform carbonates in the early Middle Ordovician (earliest Darriwilian). Elsewhere this subaerial exposure event is manifested as a major paleokarst unconformity at the Sauk-Tippecanoe sequence boundary beneath the Middle Ordovician succession and its equivalents, most in notably North America and North China. Due to its global extent, this paleokarst unconformity has been viewed as a product of second- or third-order eustatic sea level fall during the early Middle Ordovician. The Sauk-Tippecanoe sequence boundary in South Korea, however, appears to be a discrete marine-flooding surface in the upper Maggol Limestone. Strata beneath this surface represent by a thinning-upward stack of exposure-capped tidal flat-dominated cycles that are closely associated with multiple occurrences of paleokarst-related solution-collapse breccias. This marine-flooding surface is onlapped by a thick succession of thin-bedded micritic limestone that is eventually overlain by a Middle Ordovician condensed section. This physical stratigraphic relationship suggest that second- and third-order eustatic sea level fall may have been significantly tempered by regional tectonic subsidence near the end of Maggol deposition. The tectonic subsidence is also evidenced by the occurrence of coeval off-platform lowstand siliciclastic quartzite lenses as well as debris flow carbonate breccias (i.e., the Yemi Breccia) in the basin. With continued tectonic subsidence, a subsequent rise in the eustatic cycle caused drowning and deep flooding of the carbonate platform, forming a discrete marine-flooding surface that may be referred to as a drowning unconformity. This tectonic interpretation contrasts notably with the slowly subsiding carbonate platform model for the basin as has been previously suggested. Thus, it is proposed that the Taebaeksan Basin in the northeastern flank on the Okcheon Belt evolved from a slowly subsiding carbonate platform to a rapidly subsiding intracontinental rift basin during the early Middle Ordovician.  相似文献   
323.
The aim of the present study is to investigate the spatial and temporal structures of precipitation over the Korean Peninsula using extensive AWS (automatic weather stations) observation network data for the summertime from May to September. Additionally TRMM/PR precipitation data in the southern part of peninsula was used to investigate the vertical structure. For the spatial and temporal scales of hourly precipitation, the e-folding threshold approach was employed to cut off the correlation in terms of distance in km and time in hours. From a correlation analysis of AWS precipitation in terms of time and space, it was found out that the e-folding distance and e-folding time in correlation coefficients ranged from 50 km–110 km and 1 h–2 h. The shortest distance and time in e-folding values were found to be in July and August. Precipitation structures in May and September tended to be isotropic, a cell-type structure, and those of July and August had an apparent band type, from the southwest to northeast. In the case of the vertical feature of precipitation, the correlation with height showed that the vertically efficient height was within 5 km as convective rain cells with a monthly difference of 1.2 km. In this study, the coastal effect tended to slightly increase threshold values.  相似文献   
324.
Summary South Asian summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models assessed as part of the Intergovernmental Panel on Climate Change Fourth Assessment. Out of the 22 models examined, 19 are able to capture the maximum rainfall during the summer monsoon period (June through September) with varying amplitude. While two models are unable to reproduce the annual cycle well, one model is unable to simulate the summer monsoon season. The simulated inter-annual variability from the 19 models is examined with respect to the mean precipitation, coefficient of variation, long-term trends and the biennial tendency. The model simulated mean precipitation varies from 500 mm to 900 mm and coefficient of variation from 3 to 13%. While seven models exhibit long-term trends, eight are able to simulate the biennial nature of the monsoon rainfall. Six models, which generate the most realistic 20th century monsoon climate over south Asia, are selected to examine future projections under the doubling CO2 scenario. Projections reveal a significant increase in mean monsoon precipitation of 8% and a possible extension of the monsoon period based on the multi-model ensemble technique. Extreme excess and deficient monsoons are projected to intensify. The projected increase in precipitation could be attributed to the projected intensification of the heat low over northwest India, the trough of low pressure over the Indo-Gangetic plains, and the land–ocean pressure gradient during the establishment phase of the monsoon. The intensification of these pressure systems could be attributed to the decline in winter/spring snowfall. Furthermore, a decrease of winter snowfall over western Eurasia is also projected along with an increase of winter snowfall over Siberia/eastern Eurasia. This projected dipole snow configuration during winter could imply changes in mid-latitude circulation conducive to subsequent summer monsoon precipitation activity. An increase in precipitable water of 12–16% is projected over major parts of India. A maximum increase of about 20–24% is found over the Arabian Peninsula, adjoining regions of Pakistan, northwest India and Nepal. Although the projected summer monsoon circulation appears to weaken, the projected anomalous flow over the Bay of Bengal (Arabian Sea) will support oceanic moisture convergence towards the southern parts of India and Sri Lanka (northwest India and adjoining regions). The ENSO-Monsoon relationship is also projected to weaken.  相似文献   
325.
326.
The night-to-night and short-term variations inUBV light curves of EW Lac which were made during 1982–1984 at Yonsei University Observatory are discussed. The long-term variability in the photometric behaviour of the star is examined with our own data as well as those of Harmanecet al. (1980).Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.Yonsei University Observatory Contribution No. 23.  相似文献   
327.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
328.
Summary ?This study compares and contrasts six infrared-based satellite rain estimation techniques and their validation during a 2-month period from June 20–August 20, 1998 over the Korean peninsula. Two probability matching techniques (PMM1, PMM2), a look-up table technique (LUT), a convective-stratiform technique (CST), the Negri-Adler-Wetzel technique (NAWT), and the Arkin technique (ARKT) are applied to hourly infrared GMS imagery. Retrieved rainrates are compared against one-minute reporting raingage observations from the dense Automated Weather Station (AWS) network of Korea. The high spatial resolution and fine temporal resolution of the AWS measurements provide a unique and effective means to validate rain estimates derived from instantaneous space measurements, which is a main scientific focus of this study. Validation results indicate that all techniques exhibit better performance for more evenly spread rain events while exhibiting lesser performance for weak and sporadic rains for which validation sampling becomes more of a problem. Validation statistics show that climatologically-local techniques such as the PMM and LUT algorithms perform better than techniques developed in climatologically different regimes, indicating the well-known dependence of rain physics on the immediate environment. Nevertheless, the validation results suggest how the rain determination parameters including attributed rain and threshold brightness temperature could be optimized locally before application. As others have found, the most difficult problem with satellite infrared techniques is in the detection and quantification of heavy rainfall events arising from uncertainties in discriminating non-precipitating anvil clouds from convective clouds. However, for the set of algorithms under examination here, given the sharp resolution of the validation measurements, it is evident that the CST algorithm exhibits superior performance in differentiating between non-precipitating anvil and heavy rain. Received January 4, 2002; revised March 11, 2002  相似文献   
329.
Abstract: Gold mineralization of the Daerae mine represents the first recognized example of the Jurassic gold mineralization in the Sangju area, Korea. It occurs as a single stage of quartz veins that fill fault fractures in Precambrian gneiss of the central‐northern Sobaegsan Massif. The mineralogical characteristics of quartz veins, such as the simple mineralogy and relatively gold‐rich (65–72 atomic % Au) nature of electrum, as well as the CO2–rich and low salinity nature of fluid inclusions, are consistent with the ‘mesothermal‐type’ gold deposits previously recognized in the Youngdong area (about 50 km southwest of the Sangju area). Ore fluids were evolved mainly through CO2 immiscibility at temperatures between about 250 and 325 C. Vein sulfides characteristically have negative sulfur isotopic values (–1.9 to +0.2 %), which have been very rarely reported in South Korea, and possibly indicate the derivation of sulfur from an ilmenite‐series granite melt. The calculated O and H isotopic compositions of hydrothermal fluids at Daerae (δ18Owater = +5.2 to +5.9 %; δDwater = –59 to –67 %) are very similar to those from the Youngdong area, and indicate the important role of magmatic water in gold mineralization. The 40Ar–39Ar age dating of a pure alteration sericite sample yields a high‐temperature plateau age of 188.3 0.1 Ma, indicating an early Jurassic age for the gold mineralization at Daerae. The lower temperature Ar‐Ar plateau defines an age of 158.4 2.0 Ma (middle Jurassic), interpreted as reset by a subsequent thermal effect after quartz vein formation. The younger plateau age is the same as the previously reported K‐Ar ages (145–171 Ma) for the other ‘mesothermal–type’ gold deposits in the Youngdong and Jungwon areas, Korea, which are too young in view of the new Jurassic Ar‐Ar plateau age (around 188 Ma).  相似文献   
330.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号