首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   752篇
  免费   19篇
  国内免费   15篇
测绘学   22篇
大气科学   60篇
地球物理   166篇
地质学   349篇
海洋学   38篇
天文学   111篇
综合类   2篇
自然地理   38篇
  2022年   5篇
  2021年   6篇
  2020年   7篇
  2019年   8篇
  2018年   6篇
  2017年   11篇
  2016年   18篇
  2015年   12篇
  2014年   24篇
  2013年   37篇
  2012年   27篇
  2011年   24篇
  2010年   31篇
  2009年   34篇
  2008年   23篇
  2007年   38篇
  2006年   28篇
  2005年   23篇
  2004年   26篇
  2003年   25篇
  2002年   29篇
  2001年   25篇
  2000年   16篇
  1999年   17篇
  1998年   15篇
  1997年   14篇
  1996年   23篇
  1995年   15篇
  1994年   9篇
  1993年   10篇
  1992年   11篇
  1991年   9篇
  1990年   12篇
  1989年   19篇
  1988年   9篇
  1987年   8篇
  1986年   7篇
  1985年   5篇
  1984年   10篇
  1983年   6篇
  1982年   6篇
  1981年   10篇
  1980年   8篇
  1979年   8篇
  1978年   8篇
  1975年   7篇
  1973年   5篇
  1971年   4篇
  1966年   5篇
  1958年   5篇
排序方式: 共有786条查询结果,搜索用时 15 毫秒
171.
In the Erzgebirge Crystalline Complex, eclogites occur in three different high pressure (HP) units (1, 2 and 3) recording contrasting pressure (P)–temperature (T) conditions. Eclogites from HP-unit 1 experienced peak metamorphic conditions in the coesite stability field at about 33 kbar/850 °C. Commonly, these eclogites from HP-unit 1 are all very similar, with an eclogitic peak assemblage of omphacite–garnet–coesite–K-feldspar, rarely accompanied by kyanite, and omphacites systematically deviating from a stoichiometric composition. In contrast, an eclogite recently found near Blumenau, is mineralogically and geochemically different from the typical eclogites of HP-unit 1. This unusual eclogite reveals the eclogitic equilibrium assemblage omphacite–garnet–coesite–phengite–phlogopite–kyanite, and yields metamorphic peak conditions of 870 °C and >29 kbar. There is clear textural evidence of the formation of phlogopite and kyanite under partial consumption of phengite and garnet. Moreover, the omphacite is stoichiometric and contains abundant exsolution lamellae, the thickest of which were identified as quartz by the electron microprobe. The finer lamellae were studied by transmission electron microscopy (TEM). Oligoclase was identified as an exsolution phase. Other lamellae proved to consist of K-white mica, also interpreted as exsolution. Prior to exsolution, the omphacite composition must have been cation-deficient, as that of the other, common HP-unit 1 eclogites. These non-stoichiometric compositions are ascribed to partial substitution by the Ca-Eskola pyroxene component, which calculates to an average of 8 mol% for omphacite in HP-unit 1 eclogites. According to experiments, this substitution becomes significant at P > 30 kbar. Exsolution of K-white mica may indicate hydroxyl defects in the original omphacite, also favoured by high pressure. Oligoclase and K-white mica exsolution from Ca-Eskola-rich clinopyroxene has not previously been reported. The omphacite has a disordered C2/c structure; and in just one case very small (a few tens of nanometres) antiphase domains, resulting from the C2/c to P2/n transformation, are present. These features may indicate a brief thermal history and rapid tectonic processes. Received: 4 January 1999 / Accepted: 20 April 2000  相似文献   
172.
Ground-penetrating radar (GPR) is a geophysical technique widely used to study the shallow subsurface and identify various sediment features that reflect electromagnetic waves. However, little is known about the exact cause of GPR reflections because few studies have coupled wave theory to petrophysical data. In this study, a 100- and 200-MHz GPR survey was conducted on aeolian deposits in a quarry. Time-domain reflectometry (TDR) was used to obtain detailed information on the product of relative permittivity (ɛr) and relative magnetic permeability (μr), which mainly controls the GPR contrast parameter in the subsurface. Combining TDR data and lacquer peels from the quarry wall allowed the identification of various relationships between sediment characteristics and ɛrμr. Synthetic radar traces, constructed using the TDR logs and sedimentological data from the lacquer peels, were compared with the actual GPR sections. Numerous peaks in ɛrμr, which are superimposed on a baseline value of 4 for dry sand, are caused by potential GPR reflectors. These increases in ɛrμr coincide with the presence of either organic material, having a higher water content and relative permittivity than the surrounding sediment, or iron oxide bands, enhancing relative magnetic permeability and causing water to stagnate on top of them. Sedimentary structures, as reflected in textural change, only result in possible GPR reflections when the volumetric water content exceeds 0·055. The synthetic radar traces provide an improved insight into the behaviour of radar waves and show that GPR results may be ambiguous because of multiples and interference.  相似文献   
173.
Since 1980 when F. Lippmann's seminal paper appeared, ourunderstanding of solubility equilibria involving ionic solidsolutions has been advanced by theoretical considerations as wellas careful experimental studies designed to determine excess Gibbsfunctions. A unified theory of solid-solution aqueous-solutionequilibria as well as the thermodynamic background of thephenomenon of ``stoichiometric saturation' are reviewed.It is shown that Lippmann diagrams effectively summarize thethermodynamic basis of solid-solute aqueous-solution equilibria ofsparingly soluble metal carbonate systems. Clearly, the predictivepower of these diagrams may be limited due to kineticrestrictions. Only when dissolution and precipitation areessentially reversible, favourable conditions to synthesizehomogeneous solid phases can be derived from studies of equilibria.  相似文献   
174.
175.
Recent developments in theoretical model-calculations for the synthesis of the chemical elements during late stages of stellar evolution are reviewed. Special emphasis is put on a discussion of various astrophysical sites, including core-collapse and thermonuclear supernovae, and the physics of turbulent reactive fluids. Results of numerical simulations are presented and discussed, together with new results concerning solar-system abundances as well as abundances observed in very metal-poor stars, in the context of searches for constraints on the still rather uncertain nuclear physics data and astrophysical models. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
176.
The Baoshan block of the Tethyan Yunnan, southwestern China, is considered as northern part of the Sibumasu microcontinent. Basement of this block that comprises presumably greenschist-facies Neoproterozoic metamorphic rocks is covered by Paleozoic to Mesozoic low-grade metamorphic sedimentary rocks. This study presents zircon ages and Nd–Hf isotopic composition of granites generated from crustal reworking to reveal geochemical feature of the underlying basement. Dating results obtained using the single zircon U–Pb isotopic dilution method show that granites exposed in the study area formed in early Paleozoic (about 470 Ma; Pingdajie granite) and in late Yanshanian (about 78–61 Ma, Late Cretaceous to Early Tertiary; Huataolin granite). The early Paleozoic granite contains Archean to Mesoproterozoic inherited zircons and the late Yanshanian granite contains late Proterozoic to early Paleozoic zircon cores. Both granites have similar geochemical and Nd–Hf isotopic charateristics, indicating similar magma sources. They have whole-rock T DM(Nd) values of around 2,000 Ma and zircon T DM(Hf) values clustering around 1,900–1,800 and 1,600–1,400 Ma. The Nd–Hf isotopic data imply Paleoproterozoic to Mesoproterozoic crustal material as the major components of the underlying basement, being consistent with a derivation from Archean and Paleoproterozoic terrains of India or NW Australia. Both granites formed in two different tectonic events similarly originated from intra-crustal reworking. Temporally, the late Yanshanian magmatism is probably related to the closure of the Neotethys ocean. The early Paleozoic magmatism traced in the Baoshan block indicates a comparable history of the basements during early Paleozoic between the SE Asia and the western Tethyan belt, such as the basement outcrops in the Alpine belt and probably in the European Variscides that are considered as continental blocks drifting from Gondwana prior to or simultaneously with those of the SE Asia.  相似文献   
177.
We present a geochemical and isotopic study that, consistent with observed field relations, suggest Sangmelima late Archaean high-K granite was derived by partial melting of older Archaean TTG. The TTG formations are sodic-trondhjemitic, showing calcic and calc-alkalic trends and are metaluminous to peraluminous. High-K granites in contrast show a potassic calc-alkaline affinity that spans the calcic, calc-alkalic, alkali-calcic and alkalic compositions. The two rock groups (TTG and high-K granites) on the other hand are both ferroan and magnesian. They have a similar degree of fractionation for LREE but a different one for HREE. Nd model ages and Sr/Y ratios define Mesoarchaean and slab-mantle derived magma compositions respectively, with Nb and Ti anomalies indicating a subduction setting for the TTG. Major and trace element in addition to Sr and Nd isotopic compositions support field observations that indicate the derivation of the high-K granitic group from the partial melting of the older TTG equivalent at depth. Geochemical characteristics of the high-K granitic group are therefore inherited features from the TTG protolith and cannot be used for determining their tectonic setting. The heat budget required for TTG partial melting is ascribed to the upwelling of the mantle marked by a doleritic event of identical age as the generated high-K granite melts. The cause of this upwelling is related to linear delamination along mega-shear zones in an intracontinental setting.  相似文献   
178.
Total 138 coal samples and 14 parting samples were taken from the No. 6 Seam of the Jungar Coalfield, Inner Mongolia. These samples were analysed by optical microscopy, sequential chemical extraction procedure (SCEP), inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRD), and scanning electron microscope in conjunction with an energy-dispersive X-ray spectrometer (SEM-EDX) analysis. The results indicate that the Li contents have reached the industrial grade of the coal associated Li deposit, and the total Li reserves have reached 2406600 tons, that is, 5157000 tons Li2O in the No. 6 seam in the Jungar Coalfield. The sequential chemical extraction procedure results suggest that the Li concentration is mainly related to inorganic matter. The minerals in the coals consist of kaolinite, boehmite, chlorite-group mineral, quartz, calcite, pyrite, siderite and amorphous clay material. Some Li could be absorbed by clay minerals in the Li-bearing coal seam. The chlorite phase?could be?most likely the host for a part of Li. The Yinshan Oldland should be the most possible source of Li of the coal.  相似文献   
179.
For the Quaternary and Neogene, aragonitic biogenic and abiogenic carbonates are frequently exploited as archives of their environment. Conversely, pre‐Neogene aragonite is often diagenetically altered and calcite archives are studied instead. Nevertheless, the exact sequence of diagenetic processes and products is difficult to disclose from naturally altered material. Here, experiments were performed to understand biogenic aragonite alteration processes and products. Shell subsamples of the bivalve Arctica islandica were exposed to hydrothermal alteration. Thermal boundary conditions were set at 100°C, 175°C and 200°C. These comparably high temperatures were chosen to shorten experimental durations. Subsamples were exposed to different 18O‐depleted fluids for durations between two and twenty weeks. Alteration was documented using X‐ray diffraction, cathodoluminescence, fluorescence and scanning electron microscopy, as well as conventional and clumped isotope analyses. Experiments performed at 100°C show redistribution and darkening of organic matter, but lack evidence for diagenetic alteration, except in Δ47 which show the effects of annealing processes. At 175°C, valves undergo significant aragonite to calcite transformation and neomorphism. The δ18O signature supports transformation via dissolution and reprecipitation, but isotopic exchange is limited by fluid migration through the subsamples. Individual growth increments in these subsamples exhibit bright orange luminescence. At 200°C, valves are fully transformed to calcite and exhibit purple‐blue luminescence with orange bands. The δ18O and Δ47 signatures reveal exchange with the aqueous fluid, whereas δ13C remains unaltered in all experiments, indicating a carbonate‐buffered system. Clumped isotope temperatures in high‐temperature experiments show compositions in broad agreement with the measured temperature. Experimentally induced alteration patterns are comparable with individual features present in Pleistocene shells. This study represents a significant step towards sequential analysis of diagenetic features in biogenic aragonites and sheds light on reaction times and threshold limits. The limitations of a study restricted to a single test organism are acknowledged and call for refined follow‐up experiments.  相似文献   
180.
Concentrations of the platinum-group elements have been determined in several suites of southern African flood-type basalts and mid-ocean ridge basalt (MORB), covering some 3 Ga of geologic evolution and including the Etendeka, Karoo, Soutpansberg, Machadodorp, Hekpoort, Ventersdorp and Dominion magmas. The magmas cover a compositional range from 3.7 to 18.7% MgO, 26–720 ppm Ni, 16–250 ppm Cu, and <1–255 ppb total platinum-group elements (PGE). The younger basalts (Etendeka, Karoo) tend to be depleted in PGE relative to Cu, while most of the older basalts (Hekpoort, Machadodorp, Ventersdorp, Dominion) show no PGE depletion relative to Cu. Further, the younger basalts tend to have lower average Pt/Pd ratios than the older basalts, and the MORBs have lower average Pt/Pd than the continental basalts within the broad groupings of "old" and "young" basalts. This may reflect (1) a decreasing degree of mantle melting through geologic time, and (2) source heterogeneity, in that the MORBs are derived from predominantly asthenospheric mantle, whereas the continental basalts also contain a lithospheric mantle component enriched in Pt. In addition to these factors, some PGE fractionation also occurred during differentiation of the magmas, with Pd showing incompatible behaviour and the other PGE variably compatible behaviour. The examined southern African flood-type basalts and MORB appear to offer limited prospects for magmatic sulfide ores, largely because they show little evidence for significant chalcophile metal depletion that could be the result of sulphide extraction during ascent and crystallization.Editorial responsibility: I. Parsons  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号