首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   15篇
  国内免费   1篇
地球物理   48篇
地质学   4篇
自然地理   15篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   7篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   7篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2000年   2篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
61.
Nahal Paran drains 3600 km2 of Egypt's Sinai peninsula and Israel's Negev Desert. Much of the channel is alluvial, but a canyon 10·5 km long has been incised into Late Cretaceous chert and dolomite in the lower portion of the basin. Slackwater deposits and paleostage indicators preserved within the canyon record approximately 10 floods of 200 to 2500 m3 s?1 over a period of at least 350 years. Step-backwater simulations of flood-flow hydraulics indicate extreme variations in stream power per unit area along the length of the canyon, and associated variability in energy expenditure and sediment transport. These variations reflect channel cross-sectional morphology. The greatest values of stream power occur along the lower half of the study reach, in association with three pronounced knickpoints and an inner channel. The locations of these features reflect the exposure of thick, resistant chert layers along the channel. The presence of several similar, but buried and inactive, knickpoints along the upper study reach indicates that the locus of most active channel incision has shifted with time, probably in response to baselevel changes associated with tectonic activity along the Dead Sea Rift. Thus, the rate and manner of channel incision along the canyon of Nahal Paran are controlled by lithologic variability and tectonic uplift as they influence channel morphology and gradient, which in turn influence hydraulics and sediment transport.  相似文献   
62.
Reach-scale channel geometry of mountain streams   总被引:3,自引:0,他引:3  
Ellen Wohl  David M. Merritt   《Geomorphology》2008,93(3-4):168-185
The basic patterns and processes of steep channels remain poorly known relative to lower-gradient channels. In this analysis, characteristics of step-pool, plane-bed, and pool-riffle channels are examined using a data set of 335 channel reaches from the western United States, Nepal, New Zealand, and Panama. We analyzed differences among the three channel types with respect to hydraulics, channel geometry, boundary roughness, and bedforms. Step-pool channels have significantly steeper gradients, coarser substrate, higher values of shear stress and stream power for a given discharge, and larger ratios of bedform amplitude/wavelength (H/L). Pool-riffle channels have greater width/depth ratios and relative grain submergence (R/D84) than the other channel types. Plane-bed channels tend to have intermediate values for most variables examined. Relative form submergence (R/H) is statistically similar for step-pool and pool-riffle channels. Despite the lesser relative grain submergence and greater bedform amplitude of step-pool channels, mean values of Darcy–Weisbach friction factor do not change in response to changes in relative grain submergence. These patterns suggest that adjustments along mountain streams effectively maximize resistance to flow and minimize downstream variability in resistance among the different channel types.  相似文献   
63.
Elizabeth B. Oswald  Ellen Wohl   《Geomorphology》2008,100(3-4):549-562
A jökulhlaup burst from the head of Grasshopper Glacier in Wyoming's Wind River Mountains during early September 2003. Five reaches with distinct sedimentation patterns were delineated along the Dinwoody Creek drainage. This paper focuses on a portion of the jökulhlaup route where erosion of the forested banks created 16 large logjams spaced at longitudinal intervals of tens to hundreds of meters. Aggradation within the main channel upstream from each logjam created local sediment wedges, and the jams facilitated overbank deposition during the jökulhlaup. Field surveys during 2004 and 2006 documented logjam characteristics and associated erosional and depositional features, as well as initial modification of the logjams and flood deposits within the normal seasonal high-flow channel. Overbank deposits have not been altered by flows occurring since 2003. Field measurements supported three hypotheses that (i) logjams present along the forested portions of the jökulhlaup route are larger and more closely spaced than those along adjacent, otherwise comparable stream channels that have not recently experienced a jökulhlaup; (ii) logjams are not randomly located along the jökulhlaup route, but instead reflect specific conditions of channel and valley geometry and flood hydraulics; and (iii) the presence of logjams facilitated significant erosional and depositional effects. This paper documents a sequence of events in which outburst floodwaters enhance bank erosion and recruitment of wood into the channel, and thus the formation of large logjams. These logjams sufficiently deflect flow to create substantial overbank deposition in areas of the valley bottom not commonly accessed by normal snowmelt peak discharges, and through this process promote valley-bottom aggradation and sediment storage. Changes in the occurrence of glacier outburst floods thus have the potential to alter the rate and magnitude of valley-bottom dynamics in these environments, which is particularly relevant given predictions of worldwide global warming and glacial retreat. Processes observed at this field site likely occur in other forested catchments with headwater glaciers.  相似文献   
64.
We evaluate the validity of the beaver‐meadow complex hypothesis, used to explain the deposition of extensive fine sediment in broad, low‐gradient valleys. Previous work establishes that beaver damming forms wet meadows with multi‐thread channels and enhanced sediment storage, but the long‐term geomorphic effects of beaver are unclear. We focus on two low‐gradient broad valleys, Beaver Meadows and Moraine Park, in Rocky Mountain National Park (Colorado, USA). Both valleys experienced a dramatic decrease in beaver population in the past century and provide an ideal setting for determining whether contemporary geomorphic conditions and sedimentation are within the historical range of variability of valley bottom processes. We examine the geomorphic significance of beaver‐pond sediment by determining the rates and types of sedimentation since the middle Holocene and the role of beaver in driving floodplain evolution through increased channel complexity and fine sediment deposition. Sediment analyses from cores and cutbanks indicate that 33–50% of the alluvial sediment in Beaver Meadows is ponded and 28–40% was deposited in‐channel; in Moraine Park 32–41% is ponded sediment and 40–52% was deposited in‐channel. Radiocarbon ages spanning 4300 years indicate long‐term aggradation rates of ~0.05 cm yr‐1. The observed highly variable short‐term rates indicate temporal heterogeneity in aggradation, which in turn reflects spatial heterogeneity in processes at any point in time. Channel complexity increases directly downstream of beaver dams. The increased complexity forms a positive feedback for beaver‐induced sedimentation; the multi‐thread channel increases potential channel length for further damming, which increases the potential area occupied by beaver ponds and the volume of fine sediment trapped. Channel complexity decreased significantly as surveyed beaver population decreased. Beaver Meadows and Moraine Park represent settings where beaver substantially influence post‐glacial floodplain aggradation. These findings underscore the importance of understanding the historical range of variability of valley bottom processes, and implications for environmental restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
65.
We measured longitudinal spacing and wood volume of channel‐spanning logjams along 30 1‐km reaches of forest streams in the Colorado Front Range, USA. Study streams flow through old‐growth (> 200 year stand age) or younger subalpine conifer forest. Evaluating correlations between the volume and longitudinal spacing of logjams in relation to channel and forest characteristics, we find that old‐growth forest streams have greater in‐stream wood loads and more jams per kilometer than streams in younger forest. Old‐growth forests have a larger basal area close to the stream and correlate with larger piece diameters of in‐stream wood. Jam volume correlates inversely with the downstream spacing for ramp and bridge pieces that can act as key pieces in jams. Most importantly, old‐growth streams have shorter downstream spacing for ramp and bridge pieces (< 20 m). Our results suggest that management of in‐stream wood and associated stream characteristics can be focused most effectively at the reach scale, with an emphasis on preserving old‐growth riparian stands along lower gradient stream reaches or mimicking the effects of old growth by manipulating the spacing of ramp and bridge pieces. Our finding that average downstream spacing between jams declines as wood load increases suggests that the most effective way to create and retain jams is to ensure abundant sources of wood recruitment, with a particular emphasis on larger pieces that are less mobile because they have at least one anchor point outside the active channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
66.
Monitoring large wood (LW: width > 10 cm, length > 1 m) in transport within rivers is a necessary next step in the development and refinement of wood budgets and is essential to a better understanding of basin‐wide controls and patterns of LW flux and loads. Monitoring LW transport with coarse interval (≥ 1 min) time‐lapse photography enables the deployment of monitoring cameras at large spatial and long temporal scales. Although less precise than continuous sampling with video, it allows investigators to answer broad questions about basin connectivity, compare drainages and years,and identify transport relationships and thresholds. This paper describes methods to: (i) construct fluvial wood flux curves; (ii) analyze the effects of sample interval lengths on transport estimates; and (iii) estimate total wood loads within a specified time period using coarse‐interval time‐lapse photography. Applying these methods to the Slave River, a large‐volume (103 m3 s‐1), low‐gradient (10? 2 m km? 1) river in the subarctic (60° N), yielded the following results. A threshold relationship for wood mobility was located around 4500 m3 s‐1. More wood is transported on the rising limb of the hydrograph because wood flux declines rapidly on the falling limb. Five‐ and ten‐minute sampling intervals provided unbiased equal variance estimates of 1 min sampling, whereas 15 min intervals were biased towards underestimation by 5–6%, possibly due to periodicity in wood flux. Total LW loads estimated from the 1 min dataset and adjusted for a 15% misdetection rate from 13 July to 13 August are: 1600 ± 200 # pieces, 600 ± 200 m3 and of the order of 1.3 × 105 kg carbon. The total wood load for the entire summer season is probably at least double this estimate because only the second half of the summer was monitored and a large early summer peak freshet was missed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
67.
Step-pool sequences formed in alluvial and bedrock channel segments of the Christopher Creek drainage in central Arizona suggest that bedform geometries may reflect subtle differences in relative substrate resistance and in the ratio of driving forces to resisting forces. Three alluvial channel segments and two bedrock channel segments along a 72-km2 drainage and a 4-km2 drainage facilitated comparison across different substrates and hydraulic environments. As substrate resistance increased or the ratio of hydraulic driving forces and boundary resisting forces decreased, channel gradient increased, the ratio of step height to length normalized by gradient decreased, and pool dimensions normalized by gradient decreased. These changes in bedform geometry suggest that as the ratio of driving to resisting forces increases, proportionally more flow energy is dissipated within the flow as turbulence and shearing (as in the alluvial reaches) rather than being applied to erosion of the channel boundaries (as in the bedrock reaches).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号