首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6766篇
  免费   1531篇
  国内免费   2220篇
测绘学   980篇
大气科学   1239篇
地球物理   1460篇
地质学   4002篇
海洋学   1087篇
天文学   228篇
综合类   638篇
自然地理   883篇
  2024年   72篇
  2023年   180篇
  2022年   517篇
  2021年   592篇
  2020年   434篇
  2019年   597篇
  2018年   544篇
  2017年   515篇
  2016年   569篇
  2015年   564篇
  2014年   577篇
  2013年   590篇
  2012年   663篇
  2011年   606篇
  2010年   578篇
  2009年   495篇
  2008年   427篇
  2007年   390篇
  2006年   290篇
  2005年   223篇
  2004年   154篇
  2003年   101篇
  2002年   81篇
  2001年   99篇
  2000年   91篇
  1999年   96篇
  1998年   71篇
  1997年   61篇
  1996年   43篇
  1995年   58篇
  1994年   37篇
  1993年   40篇
  1992年   39篇
  1991年   25篇
  1990年   16篇
  1989年   14篇
  1988年   15篇
  1987年   9篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1978年   2篇
  1974年   2篇
  1965年   1篇
  1958年   6篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
In high elevation cold regions of the Tibetan Plateau, suspended sediment transfer from glacier meltwater erosion is one of the important hydrological components. The Zhadang glacier is a typical valley‐type glacier in the Nyainqentanglha Mountains on the Tibetan Plateau. To make frequent and long period records of meltwater runoff and sediment processes in the very high elevation and isolated regions, an automatic system was installed near the glacier snout (5400 m a.s.l) in August 2013, to measure the transient discharge and sediment processes at 5‐min interval, which is shorter than the time span for the water flow to traverse the catchment from the farthest end to the watershed outlet. Diurnal variations of discharge, and suspended sediment concentration (SSC) were recorded at high frequency for the Zhadang glacier, before suspended sediment load (SSL) was computed. Hourly SSC varied from the range of 0.2 kg/m3 to 0.5 kg/m3 (at 8:00–9:00) to the range of 2.0 kg/m3 to 4.0 kg/m3 (at 17:00–18:00). The daily SSL was 32.24 t during the intense ablation period. Hourly SSC was linearly correlated with discharge (r = 0.885**, n = 18, p < 0.01). A digit‐eight hysteresis loop was observed for the sediment transport in the glacier area. Air temperature fluctuations influence discharge, and then result in the sediment variations. The results of this study provide insight into the responses of suspended sediment delivery processes with a high frequency data in the high elevation cold regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
103.
104.
Flow in a single fracture (SF) is an important research subject in groundwater hydrology, hydraulic engineering, radioactive nuclear waste repository and geotechnical engineering. An abruptly changing aperture is a unique type of SF. This study discusses the relation between the values of the critical Reynolds number (Rec) for the onset of symmetry breaking of flow and the expansion ratio (E) of SF, which is defined as the ratio between the outlet (D) and inlet (d) apertures. This study also investigates the effect of inlet aperture d on Rec for flow in an SF with abruptly changing apertures (SF‐ACA) using the finite volume method. Earlier numerical and experimental results showed that flow is symmetric in respect to the central plane of the SF‐ACA at small Reynolds number (Re) but becomes asymmetric when Re is sufficiently large. Our simulations show that the value of Rec decreases with the increasing E, and the relationship between the logarithm of Rec and E can be described accurately using either a quadratic polynomial function or a logarithmic function. However, the relationship of Rec and d for a given E value is vague, and Rec becomes even less sensitive to d when E increases. This study also reveals that the hydraulic gradient (J) and flow velocity (v) follow a super‐linear relationship that can be fitted almost perfectly by the Forchheimer equation. The inertial component (Ji) of J increases monotonically with Re, whereas the viscous component (Jv) of J decreases monotonically with Re. The Re value corresponding to equal inertial and viscous components of J (named as the transitional point Re) decreases when E increases, and such a transitional point Re should be closely related to the critical Reynolds number Rec, although a rigorous theoretical proof is not yet available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
105.
Lei Yao  Liding Chen  Wei Wei 《水文研究》2016,30(12):1836-1848
Imperviousness, considered as a critical indicator of the hydrologic impacts of urbanization, has gained increasing attention both in the research field and in practice. However, the effectiveness of imperviousness on rainfall–runoff dynamics has not been fully determined in a fine spatiotemporal scale. In this study, 69 drainage subareas <1 ha of a typical residential catchment in Beijing were selected to evaluate the hydrologic impacts of imperviousness, under a typical storm event with a 3‐year return period. Two metrics, total impervious area (TIA) and effective impervious area (EIA), were identified to represent the impervious characteristics of the selected subareas. Three runoff variables, total runoff depth (TR), peak runoff depth (PR), and lag time (LT), were simulated by using a validated hydrologic model. Regression analyses were developed to explore the quantitative associations between imperviousness and runoff variables. Then, three scenarios were established to test the applicability of the results in considering the different infiltration conditions. Our results showed that runoff variables are significantly related to imperviousness. However, the hydrologic performances of TIA and EIA were scale dependent. Specifically, with finer spatial scale and the condition heavy rainfall, TIA rather than EIA was found to contribute more to TR and PR. EIA tended to have a greater impact on LT and showed a negative relationship. Moreover, the relative significance of TIA and EIA was maintained under the different infiltration conditions. These findings may provide potential implications for landscape and drainage design in urban areas, which help to mitigate the runoff risk. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
106.
The most popular practice for analysing nonstationarity of flood series is to use a fixed single‐type probability distribution incorporated with the time‐varying moments. However, the type of probability distribution could be both complex because of distinct flood populations and time‐varying under changing environments. To allow the investigation of this complex nature, the time‐varying two‐component mixture distributions (TTMD) method is proposed in this study by considering the time variations of not only the moments of its component distributions but also the weighting coefficients. Having identified the existence of mixed flood populations based on circular statistics, the proposed TTMD was applied to model the annual maximum flood series of two stations in the Weihe River basin, with the model parameters calibrated by the meta‐heuristic maximum likelihood method. The performance of TTMD was evaluated by different diagnostic plots and indexes and compared with stationary single‐type distributions, stationary mixture distributions and time‐varying single‐type distributions. The results highlighted the advantages of TTMD with physically‐based covariates for both stations. Besides, the optimal TTMD models were considered to be capable of settling the issue of nonstationarity and capturing the mixed flood populations satisfactorily. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
107.
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号