首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   9篇
  国内免费   4篇
测绘学   6篇
大气科学   15篇
地球物理   43篇
地质学   64篇
海洋学   22篇
天文学   15篇
自然地理   20篇
  2023年   3篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   5篇
  2015年   10篇
  2014年   6篇
  2013年   8篇
  2012年   9篇
  2011年   6篇
  2010年   11篇
  2009年   8篇
  2008年   13篇
  2007年   11篇
  2006年   7篇
  2005年   8篇
  2004年   7篇
  2003年   3篇
  2002年   5篇
  2001年   7篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1987年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
排序方式: 共有185条查询结果,搜索用时 31 毫秒
51.
The preferential incorporation of High-Field-Strength Elements (HFSE) in rutile (TiO2), combined with its supposed stability in subduction zone settings, make it an ideal candidate to explain the low HFSE concentrations in subduction-derived magmas. The solubility behaviour of rutile is key to these arguments, but at present experimental and field-based evidence are contradictory.We have used abinitio molecular (meta)dynamics to investigate the coordination environment of Ti(IV) in pure water at 300 and 1000 K and densities ranging from 900-1260 kg m−3 (approximate pressures 0.9-3.6 GPa). In all high temperature simulations, the long-range structure of the solvent indicates a breakdown of the hydrogen bonding network as expected for supercritical water. The five-fold coordination of titanium to water is energetically most favourable in aqueous fluids at room temperature and pressure, separated from four and six-fold configurations by ∼175 and ∼200 kJ mol−1, respectively. The average first shell Ti-O distance is 2.00 Å, in excellent agreement with bond lengths obtained from experiments. At similar densities and 1000 K, titanium is on average six-fold coordinate with water, and shows some degree of water dissociation in the first hydration shell. This coordination environment is remarkably persistent with increasing density from 1021 to 1260 kg m−3 at constant temperature (1000 K). At lower densities, however, (900 kg m−3 at 1000 K), the coordination with first shell water molecules is less than five. The observed coordination changes could promote association of titanium with peralkaline or peraluminous domains in the aqueous fluid, and thereby explain field-and laboratory based evidence of enhanced HFSE concentrations.This study demonstrates that abinitio molecular dynamics has considerable potential to access details of element behaviour in aqueous fluids at geologically relevant conditions that are impossible to examine otherwise. Changes in the solvent structure due to density variations lead to differences in solvent behaviour allowing access to new domains for fluid-solid interaction. Moreover, changes in the solvent structure are strongly linked to the effectiveness of element solvation.  相似文献   
52.
Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO–MgO–Al2O3–SiO2 and subsystem CaO–MgO–SiO2. We provide experimental partition coefficients for a wide range of trace elements (large ion lithophile: Li, Be, B, K, Rb, Sr, Cs, Ba, Th, U; rare earth elements, REE: La, Ce, Nd, Sm, Y, Yb, Lu; high field strength: Zr, Nb, Hf, Ta, Ti; transition metals: Sc, V, Cr, Co) for use in petrogenetic modelling. REE partition coefficients increase from $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO–MgO–Al2O3–SiO2 and subsystem CaO–MgO–SiO2. We provide experimental partition coefficients for a wide range of trace elements (large ion lithophile: Li, Be, B, K, Rb, Sr, Cs, Ba, Th, U; rare earth elements, REE: La, Ce, Nd, Sm, Y, Yb, Lu; high field strength: Zr, Nb, Hf, Ta, Ti; transition metals: Sc, V, Cr, Co) for use in petrogenetic modelling. REE partition coefficients increase from $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 to $ D_{\text{Lu}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.109 $ D_{\text{Lu}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.109 , D values for highly charged elements vary from $ D_{\text{Th}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0026 $ D_{\text{Th}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0026 through $ D_{\text{Nb}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0033 $ D_{\text{Nb}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0033 and $ D_{\text{U}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0066 $ D_{\text{U}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0066 to $ D_{\text{Ti}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.058 $ D_{\text{Ti}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.058 , and are all virtually independent of temperature. Cr and Co are the only compatible trace elements at the studied conditions. To elucidate charge-balancing mechanisms for incorporation of REE into Opx and to assess the possible influence of Fe on Opx-melt partitioning, we compare our experimental results with computer simulations. In these simulations, we examine major and minor trace element incorporation into the end-members enstatite (Mg2Si2O6) and ferrosilite (Fe2Si2O6). Calculated solution energies show that R2+ cations are more soluble in Opx than R3+ cations of similar size, consistent with experimental partitioning data. In addition, simulations show charge balancing of R3+ cations by coupled substitution with Li+ on the M1 site that is energetically favoured over coupled substitution involving Al–Si exchange on the tetrahedrally coordinated site. We derived best-fit values for ideal ionic radii r 0, maximum partition coefficients D 0, and apparent Young’s moduli E for substitutions onto the Opx M1 and M2 sites. Experimental r 0 values for R3+ substitutions are 0.66–0.67 ? for M1 and 0.82–0.87 ? for M2. Simulations for enstatite result in r 0 = 0.71–0.73 ? for M1 and ~0.79–0.87 ? for M2. Ferrosilite r 0 values are systematically larger by ~0.05 ? for both M1 and M2. The latter is opposite to experimental literature data, which appear to show a slight decrease in $ r_{0}^{{{\text{M}}2}} $ r_{0}^{{{\text{M}}2}} in the presence of Fe. Additional systematic studies in Fe-bearing systems are required to resolve this inconsistency and to develop predictive Opx-melt partitioning models for use in terrestrial and lunar magmatic differentiation models.  相似文献   
53.
We analysed pollen from a sediment core from Fiddaun, a small Lateglacial lake basin in western Ireland. Results reflect the general Lateglacial vegetation development in Ireland, as reconstructed from other pollen records. The Fiddaun diagram shows a number of short‐lived regressive vegetation phases during the Interstadial. The close similarity between two pollen records from the same region (Fiddaun and Lurga) indicates that these fluctuations probably reflect regional rather than local changes. Comparison with a previously published climate reconstruction, based on a chironomid‐inferred mean July air temperature reconstruction, lithology, and oxygen and carbon isotopes of lake marl from the Fiddaun record, allowed us to establish the relationship between summer temperature and vegetation changes. Results reveal that two temporary regressive shifts in the pollen record correspond to cold oscillations, which have been correlated to Greenland Interstadial 1b and 1d. It seems that the first cold oscillation (GI‐1d) had the most distinct effect on vegetation in Ireland. In contrast, it appears that the transition from Juniperus shrubland and Empetrum heath to grassland, which is estimated at ~13.7 ka BP, was not caused by decreasing summer temperatures, as no substantial change is observed in the climate proxies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
54.
We relocate 81 large nuclear explosions that were detonated at the Balapan and Degelen Mountain subregions of the Semipalatinsk test site in Kazakhstan during the years 1978 to 1989. The absolute locations of these explosions are available, as well as very accurate estimates of their origin times. This ground truth information allows us to perform a detailed analysis of location capability. We use a sparse network of stations with highly accurate first arrival picks measured using a waveform cross-correlation method. These high quality data facilitate very accurate location estimates with only a few phases per event. We contrast two different approaches: 1) a calibration-based approach, where we achieve improved locations by using path corrections, and 2) a model-based approach, where we achieve improved locations by relocating in a recently published global 3-D P-velocity model. Both methods result in large improvements in accuracy of the obtained absolute locations, compared to locations obtained in a 1-D reference earth model (ak135). The calibration-based approach gives superior results for this test site, in particular when arrival times from regional stations are included. Estimated locations remain well within a 1000 km2 region surrounding the ground truth locations when the path corrections for the Balapan and Degelen Mountain subregions are interchanged, but even for the short separation between these two regions, we find variations in the path corrections that cause systematic mislocations. The model-based approach also results in substantially reduced mislocation distances and has the distinct advantage that it is, in principle, transportable to other source regions around the world.  相似文献   
55.
56.
For several reasons the fate and effects of oil pollution are not easily studied in natural ecosystems. Furthermore, the results of laboratory tests cannot easily be extrapolated to natural systems. A logical objective of ecotoxicological research is, therefore, to simulate natural systems in model ecosystem experiments. A one-year feasibility study was carried out with MOdel TIdal Flat ecosystems (MOTIFs), designed to represent tidal flat systems typical of the Wadden Sea and other temperate estuarine areas. During the first 6 months the 4 MOTIFs studied developed very similarly. After this period an oil spill was simulated by exposing two of the four MOTIFs to a floating oil mousse for one week. During this week part of the oil was buried in the sediment by bioturbation. This sediment-bound fraction caused a prolonged exposure of the MOTIFs to oil compounds. Short- and long-term effects resulted in large differences between oil-treated and control MOTIFs. These differences persisted to the end of the experiment, 7 months after the removal of most of the oil.  相似文献   
57.
A map-view palinspastic restoration of tectonic units in the Alps, Carpathians and Dinarides reveals the plate tectonic configuration before the onset of Miocene to recent deformations. Estimates of shortening and extension from the entire orogenic system allow for a semi-quantitative restoration of translations and rotations of tectonic units during the last 20 Ma. Our restoration yielded the following results: (1) The Balaton Fault and its eastern extension along the northern margin of the Mid-Hungarian Fault Zone align with the Periadriatic Fault, a geometry that allows for the eastward lateral extrusion of the Alpine-Carpathian-Pannonian (ALCAPA) Mega-Unit. The Mid-Hungarian Fault Zone accommodated simultaneous strike-perpendicular shortening and strike-slip movements, concomitant with strike-parallel extension. (2) The Mid-Hungarian Fault Zone is also the locus of a former plate boundary transforming opposed subduction polarities between Alps (including Western Carpathians) and Dinarides. (3) The ALCAPA Mega-Unit was affected by 290 km extension and fits into an area W of present-day Budapest in its restored position, while the Tisza-Dacia Mega-Unit was affected by up to 180 km extension during its emplacement into the Carpathian embayment. (4) The external Dinarides experienced Neogene shortening of over 200 km in the south, contemporaneous with dextral wrench movements in the internal Dinarides and the easterly adjacent Carpatho-Balkan orogen. (5) N–S convergence between the European and Adriatic plates amounts to some 200 km at a longitude of 14° E, in line with post-20 Ma subduction of Adriatic lithosphere underneath the Eastern Alps, corroborating the discussion of results based on high-resolution teleseismic tomography.The displacement of the Adriatic Plate indenter led to a change in subduction polarity along a transect through the easternmost Alps and to substantial Neogene shortening in the eastern Southern Alps and external Dinarides. While we confirm that slab-pull and rollback of oceanic lithosphere subducted beneath the Carpathians triggered back-arc extension in the Pannonian Basin and much of the concomitant folding and thrusting in the Carpathians, we propose that the rotational displacement of this indenter provided a second important driving force for the severe Neogene modifications of the Alpine-Carpathian-Dinaridic orogenic system.  相似文献   
58.
59.
As a complement to our efforts to update and revise the thermodynamic basis for predicting garnet-melt trace element partitioning using lattice-strain theory (van Westrenen and Draper in Contrib Mineral Petrol, this issue), we have performed detailed statistical evaluations of possible correlations between intensive and extensive variables and experimentally determined garnet-melt partitioning values for trivalent cations (rare earth elements, Y, and Sc) entering the dodecahedral garnet X-site. We applied these evaluations to a database containing over 300 partition coefficient determinations, compiled both from literature values and from our own work designed in part to expand that database. Available data include partitioning measurements in ultramafic to basaltic to intermediate bulk compositions, and recent studies in Fe-rich systems relevant to extraterrestrial petrogenesis, at pressures sufficiently high such that a significant component of majorite, the high-pressure form of garnet, is present. Through the application of lattice-strain theory, we obtained best-fit values for the ideal ionic radius of the dodecahedral garnet X-site, r 0(3+), its apparent Young’s modulus E(3+), and the strain-free partition coefficient D 0(3+) for a fictive REE element J of ionic radius r 0(3+). Resulting values of E, D 0, and r 0 were used in multiple linear regressions involving sixteen variables that reflect the possible influence of garnet composition and stoichiometry, melt composition and structure, major-element partitioning, pressure, and temperature. We find no statistically significant correlations between fitted r 0 and E values and any combination of variables. However, a highly robust correlation between fitted D 0 and garnet-melt Fe–Mg exchange and D Mg is identified. The identification of more explicit melt-compositional influence is a first for this type of predictive modeling. We combine this statistically-derived expression for predicting D 0 with the new expressions for predicting E and r 0 outlined in the first of our pair of companion papers into an updated set of formulae that use easy-to-measure quantities (e.g. garnet composition, pressure, temperature) to predict variations in E, r 0, and D 0. These values are used in turn to calculate D values for those garnets. The updated model substantially improves upon a previous model (van Westrenen et al. in Contrib Mineral Petrol 142:219–234, 2001), and accounts well for trivalent cation partitioning in nominally anhydrous systems up to at least 15 GPa, including for eclogitic bulk compositions and for Fe-rich systems appropriate to magmagenesis on the Moon and Mars. The new model is slightly less successful in predicting partitioning with strongly majoritic garnets, although the mismatch is much less than with the original 2001 model. Although it also improves upon the 2001 model in predicting partitioning in hydrous systems, the mismatch between model and observation is still unacceptably large. The same statistical tools were applied in an attempt to predict tetravalent partitioning as well, because lattice-strain based techniques are not applicable to such partitioning. However, no statistically significant predictive relationships emerged from that effort. Our analyses show that future efforts should focus on filling the gap in partitioning data between ∼10 and 25 GPa to evaluate more closely the gradual transition of garnet to majorite, and on systematically expanding the hydrous partitioning database to allow extension of our model to water-bearing systems.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号