首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28183篇
  免费   546篇
  国内免费   294篇
测绘学   670篇
大气科学   2193篇
地球物理   6060篇
地质学   9903篇
海洋学   2316篇
天文学   5809篇
综合类   47篇
自然地理   2025篇
  2020年   170篇
  2019年   168篇
  2018年   337篇
  2017年   320篇
  2016年   475篇
  2015年   365篇
  2014年   484篇
  2013年   1336篇
  2012年   585篇
  2011年   908篇
  2010年   771篇
  2009年   1045篇
  2008年   943篇
  2007年   894篇
  2006年   924篇
  2005年   804篇
  2004年   831篇
  2003年   783篇
  2002年   786篇
  2001年   652篇
  2000年   639篇
  1999年   619篇
  1998年   592篇
  1997年   597篇
  1996年   520篇
  1995年   496篇
  1994年   484篇
  1993年   447篇
  1992年   421篇
  1991年   373篇
  1990年   422篇
  1989年   337篇
  1988年   384篇
  1987年   418篇
  1986年   360篇
  1985年   536篇
  1984年   599篇
  1983年   602篇
  1982年   482篇
  1981年   457篇
  1980年   482篇
  1979年   423篇
  1978年   440篇
  1977年   387篇
  1976年   412篇
  1975年   368篇
  1974年   406篇
  1973年   398篇
  1972年   255篇
  1971年   205篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Y.C. Minh  W.M. Irvine   《New Astronomy》2006,11(8):594-599
The large-scale structure associated with the 2′N HNCO peak in Sgr B2 [Minh, Y.C., Haikala, L., Hjalmarson, Å., Irvine, W.M., 1998. ApJ 498, 261 (Paper I)] has been investigated. A ring-like morphology of the HNCO emission has been found; this structure may be colliding with the Principal Cloud of Sgr B2. This “HNCO Ring” appears to be centered at (l,b) = (0.7°,−0.07°), with a radius of 5 pc and a total mass of 1.0 × 105 to 1.6 × 106 M. The expansion velocity of the Ring is estimated to be 30–40 km s−1, which gives an expansion time scale of 1.5 × 105 year. The morphology suggests that collision between the Ring and the Principal Cloud may be triggering the massive star formation in the Sgr B2 cloud sequentially, with the latest star formation taking place at the 2′N position. The chemistry related to HNCO is not certain yet, but if it forms mainly via reaction with the evaporated OCN from icy grain mantles, the observed enhancement of the HNCO abundance can be understood as resulting from shocks associated with the collision between the Principal Cloud and the expanding HNCO Ring.  相似文献   
52.
53.
Of the impact craters on Earth larger than 20 km in diameter, 10-15% (3 out of 28) are doublets, having been formed by the simultaneous impact of two well-separated projectiles. The most likely scenario for their formation is the impact of well-separated binary asteroids. If a population of binary asteroids is capable of striking the Earth, it should also be able to hit the other terrestrial planets as well. Venus is a promising planet to search for doublet craters because its surface is young, erosion is nearly nonexistent, and its crater population is significantly larger than the Earth's. After a detailed investigation of single craters separated by less than 150 km and “multiple” craters having diameters greater than 10 km, we found that the proportion of doublet craters on Venus is at most 2.2%, significantly smaller than Earth's, although several nearly incontrovertible doublets were recognized. We believe this apparent deficit relative to the Earth's doublet population is a consequence of atmospheric screening of small projectiles on Venus rather than a real difference in the population of impacting bodies. We also examined “splotches,” circular radar reflectance features in the Magellan data. Projectiles that are too small to form craters probably formed these features. After a careful study of these patterns, we believe that the proportion of doublet splotches on Venus (14%) is comparable to the proportion of doublet craters found on Earth (10-15%). Thus, given the uncertainties of interpretation and the statistics of small numbers, it appears that the doublet crater population on Venus is consistent with that of the Earth.  相似文献   
54.
The interaction of carbon monoxide (CO) with vapour-deposited water(H2O) ices has been studied using temperature programmed desorption (TPD) and Fourier transform reflection-absorption infrared spectroscopy (FT-RAIRS) over a range of astrophysically relevant temperatures. Such measurements have shown that CO desorption from amorphous H2Oices is a much more complex process than current astrochemical models suggest. Re-visiting previously reported laboratory experiments (Collings et al., 2003), a rate model has been constructed to explain, in a phenomenological manner, the desorption of CO over astronomically relevant time scales. The model presented here can be widely applied to a range of astronomical environments where depletion of CO from the gas phase is relevant. The model accounts for the two competing processes of CO desorption and migration, and also enables the entrapment of some of the CO in the ice matrix and its subsequent release as the water ice crystallises and then desorbs. The astronomical implications of this model are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
55.
We review ongoing efforts to identify occupants of mean-motion resonances(MMRs) and collisional families in the Edgeworth–Kuiper belt. Directintegrations of trajectories of Kuiper belt objects (KBOs) reveal the 1:1(Trojan), 5:4, 4:3, 3:2 (Plutino), 5:3, 7:4, 9:5, 2:1 (Twotino), and 5:2 MMRsto be inhabited. Apart from the Trojan, resonant KBOs typically have largeorbital eccentricities and inclinations. The observed pattern of resonanceoccupation is consistent with resonant capture and adiabatic excitation bya migratory Neptune; however, the dynamically cold initial conditions priorto resonance sweeping that are typically assumed by migration simulationsare probably inadequate. Given the dynamically hot residents of the 5:2 MMRand the substantial inclinations observed in all exterior MMRs, a fraction ofthe primordial belt was likely dynamically pre-heated prior to resonancesweeping. A pre-heated population may have arisen as Neptune gravitationallyscattered objects into trans-Neptunian space. The spatial distribution of Twotinosoffers a unique diagnostic of Neptune's migration history. The Neptunian Trojanpopulation may rival the Jovian Trojan population, and the former's existence isargued to rule out violent orbital histories for Neptune. Finally, lowest-order seculartheory is applied to several hundred non-resonant KBOs with well-measured orbitsto update proposals of collisional families. No convincing family is detected.  相似文献   
56.
Impulsive acoustic waveforms are characterized by a different set of derived quantities than are continuous waveforms. This note presents commonly accepted definitions, units, and symbols used to describe the magnitude of impulsive underwater signals  相似文献   
57.
The occultation of Io by Ganymede as observed on 10 June 1985 is reported. The middle of the occultation minimum was found to occur at 14h 14m 5.7s UT. In the plane perpendicular to the line of sight the centres of the two satellite disks passed to within ~ 2530 km of each other, at a relative velocity, in this plane, of about 11 kms–1. The values of these last two quantities, however, depend on what assumptions are made about the light distribution over io's disk.  相似文献   
58.
The list of mass ejections published in Solar Geophysical Data during the period of Jan. 1981 to Oct. 1987 contains about 1300 Surges, Sprays and Type II bursts. The relationship between the mass ejection events and the shock front events is investigated by means of correlation of time and position. The result shows that type II bursts start as frequently after the mass ejections as prior to them.  相似文献   
59.
The dynamics of clumps observed in planetary nebulae are considered. The possibility that SiO maser spots in evolved stars and the planetary nebula clumps are formed by the Parker instability behind shocks in pulsating stars' atmospheres is raised. Molecular observations of the clumps are suggested. The effects of the ablation of clumps on the global flow structure of a more tenuous plasma in which they are embedded are reviewed.  相似文献   
60.
We present an improved analytic calculation for the tidal radius of satellites and test our results against N -body simulations.
The tidal radius in general depends upon four factors: the potential of the host galaxy, the potential of the satellite, the orbit of the satellite and the orbit of the star within the satellite . We demonstrate that this last point is critical and suggest using three tidal radii to cover the range of orbits of stars within the satellite. In this way we show explicitly that prograde star orbits will be more easily stripped than radial orbits; while radial orbits are more easily stripped than retrograde ones. This result has previously been established by several authors numerically, but can now be understood analytically. For point mass, power-law (which includes the isothermal sphere), and a restricted class of split power-law potentials our solution is fully analytic. For more general potentials, we provide an equation which may be rapidly solved numerically.
Over short times (≲1–2 Gyr ∼1 satellite orbit), we find excellent agreement between our analytic and numerical models. Over longer times, star orbits within the satellite are transformed by the tidal field of the host galaxy. In a Hubble time, this causes a convergence of the three limiting tidal radii towards the prograde stripping radius. Beyond the prograde stripping radius, the velocity dispersion will be tangentially anisotropic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号