首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   6篇
测绘学   12篇
大气科学   35篇
地球物理   48篇
地质学   45篇
海洋学   18篇
天文学   4篇
自然地理   29篇
  2021年   3篇
  2020年   2篇
  2018年   6篇
  2017年   6篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   11篇
  2012年   1篇
  2011年   9篇
  2010年   9篇
  2009年   12篇
  2008年   7篇
  2007年   10篇
  2006年   5篇
  2005年   9篇
  2004年   4篇
  2003年   6篇
  2002年   1篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1966年   2篇
  1962年   1篇
  1955年   1篇
  1950年   1篇
  1913年   1篇
排序方式: 共有191条查询结果,搜索用时 343 毫秒
71.
In the last decade, satellite gravimetry has been revealed as a pioneering technique for mapping mass redistributions within the Earth system. This fact has allowed us to have an improved understanding of the dynamic processes that take place within and between the Earth’s various constituents. Results from the Gravity Recovery And Climate Experiment (GRACE) mission have revolutionized Earth system research and have established the necessity for future satellite gravity missions. In 2010, a comprehensive team of European and Canadian scientists and industrial partners proposed the e.motion (Earth system mass transport mission) concept to the European Space Agency. The proposal is based on two tandem satellites in a pendulum orbit configuration at an altitude of about 370 km, carrying a laser interferometer inter-satellite ranging instrument and improved accelerometers. In this paper, we review and discuss a wide range of mass signals related to the global water cycle and to solid Earth deformations that were outlined in the e.motion proposal. The technological and mission challenges that need to be addressed in order to detect these signals are emphasized within the context of the scientific return. This analysis presents a broad perspective on the value and need for future satellite gravimetry missions.  相似文献   
72.
Coring during Integrated Ocean Drilling Program Expeditions 315, 316, and 333 recovered turbiditic sands from the forearc Kumano Basin (Site C0002), a Quaternary slope basin (Site C0018), and uplifted trench wedge (Site C0006) along the Kumano Transect of the Nankai Trough accretionary wedge offshore of southwest Japan. The compositions of the submarine turbiditic sands here are investigated in terms of bulk and heavy mineral modal compositions to identify their provenance and dispersal mechanisms, as they may reflect changes in regional tectonics during the past ca. 1.5 Myrs. The results show a marked change in the detrital signature and heavy mineral composition in the forearc and slope basin facies around 1 Ma. This sudden change is interpreted to reflect a major change in the sand provenance, rather than heavy mineral dissolution and/or diagenetic effects, in response to changing tectonics and sedimentation patterns. In the trench-slope basin, the sands older than 1 Ma were probably eroded from the exposed Cretaceous–Tertiary accretionary complex of the Shimanto Belt and transported via the former course of the Tenryu submarine canyon system, which today enters the Nankai Trough northeast of the study area. In contrast, the high abundance of volcanic lithics and volcanic heavy mineral suites of the sands younger than 1 Ma points to a strong volcanic component of sediment derived from the Izu-Honshu collision zones and probably funnelled to this site through the Suruga Canyon. However, sands in the forearc basin show persistent presence of blue sodic amphiboles across the 1 Ma boundary, indicating continuous flux of sediments from the Kumano/Kinokawa River. This implies that the sands in the older turbidites were transported by transverse flow down the slope. The slope basin facies then switched to reflect longitudinal flow around 1 Ma, when the turbiditic sand tapped a volcanic provenance in the Izu-Honshu collision zone, while the sediments transported transversely became confined in the Kumano Basin. Therefore, the change in the depositional systems around 1 Ma is a manifestation of the decoupling of the sediment routing pattern from transverse to long-distance axial flow in response to forearc high uplift along the megasplay fault.  相似文献   
73.
Overdeepenings, i.e. closed topographic depressions with adverse slopes in the direction of flow, are characteristic for glacier beds and glacially sculpted landscapes. Quantitative information about their morphological characteristics, however, has so far hardly been available. The present study provides such information by combining the analysis of (a) numerous bed overdeepenings below still existing glaciers of the Swiss Alps and the Himalaya‐Karakoram region modelled with a robust shear stress approximation and (b) detailed bathymetries from recently exposed lakes in the Peruvian Andes. The investigated overdeepenings exist where glacier surface slopes are low (< 5°–10°), occur in bedrock or morainic material and are most commonly a fraction of a kilometre squared in surface area, hundreds of metres long, about half the length in width and tens of metres deep. They form under conditions of low to high basal shear stresses, at cirque, confluence, trunk valley and terminus positions. The most striking phenomenon, however, is the high variability of their geometries: Depths, surface areas, lengths and widths of the overdeepenings vary over orders of magnitude and are only weakly – if at all – interrelated. Inclinations of adverse slopes do not differ significantly from those of forward slopes and are in many cases higher than so far assumed theoretical limits for supercooling of ascending water and corresponding closure of sub‐glacial channels. Such steep adverse slopes are a robust observation and in support of recently developed new concepts concerning the question about where supercooling of sub‐glacial water and closure of ice channels can or must occur. However, the question of when and under what climatic, topographic and ice conditions the overdeepenings had formed remains unanswered. This open question constitutes a key problem concerning the interpretation of observed overdeepenings, the understanding of the involved glacio‐hydraulic processes and the possibility of realistic predictive modelling of overdeepening formation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
74.
This study examines present-day changes of the Antarctic ice sheet (AIS) by means of different data sets. We make use of monthly gravity field solutions acquired by the Gravity Recovery and Climate Experiment (GRACE) to study mass changes of the AIS for a 10-year period. In addition to ‘standard’ solutions of release 05, solutions based on radial base functions were used. Both solutions reveal an increased mass loss in recent years. For a 6-year period surface-height changes were inferred from laser altimetry data provided by the Ice, Cloud, and land Elevation Satellite (ICESat). The basin-scale volume trends were converted into mass changes and were compared with the GRACE estimates for the same period. Focussing on the Thwaites Glacier, Landsat optical imagery was utilised to determine ice-flow velocities for a period of more than two decades. This data set was extended by means of high-resolution synthetic aperture radar (SAR) data from the TerraSAR-X mission, revealing an accelerated ice flow of all parts of the glacier. ICESat data over the Thwaites Glacier were complemented by digital elevation models inferred from TanDEM-X data. This extended data set exhibits an increased surface lowering in recent times. Passive microwave remote sensing data prove the long-term stability of the accumulation rates in a low accumulation zone in East Antarctica over several decades. Finally, we discuss the main error sources of present-day mass-balance estimates: the glacial isostatic adjustment effect for GRACE as well as the biases between laser operational periods and the volume–mass conversion for ICESat.  相似文献   
75.
Reducing aliasing effects of insufficiently modelled high-frequent, non-tidal mass variations of the atmosphere, the oceans and the hydrosphere in gravity field models derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission is the topic of this study. The signal content of the daily GRACE gravity field model series (ITG-Kalman) is compared to high-frequency bottom pressure variability and terrestrially stored water variations obtained from recent numerical simulations from an ocean circulation model (OMCT) and two hydrological models (WaterGAP Global Hydrology Model, Land Surface Discharge Model). Our results show that daily estimates of ocean bottom pressure from the most recent OMCT simulations and the daily ITG-Kalman solutions are able to explain up to 40 % of extra-tropical sea-level variability in the Southern Ocean. In contrast to this, the daily ITG-Kalman series and simulated continental total water storage variability largely disagree at periods below 30 days. Therefore, as long as no adequate hydrological model will become available, the daily ITG-Kalman series can be regarded as a good initial proxy for high-frequency mass variations at a global scale. As a second result of this study, based on monthly solutions as well as daily observation residuals, it is shown that applying this GRACE-derived de-aliasing model supports the determination of the time-variable gravity field from GRACE data and the subsequent geophysical interpretation. This leads us to the recommendation that future satellite concepts for determining mass variations in the Earth system should be capable of observing higher frequeny signals with sufficient spatial resolution.  相似文献   
76.
Submarine fans and turbidite systems are important and sensitive features located offshore from river deltas that archive tectonic events, regional climate, sea level variations and erosional process. Very little is known about the sedimentary structure of the 1800 km long and 400 km wide Mozambique Fan, which is fed by the Zambezi and spreads out into the Mozambique Channel. New multichannel seismic profiles in the Mozambique Basin reveal multiple feeder systems of the upper fan that have been active concurrently or consecutively since Late Cretaceous. We identify two buried, ancient turbidite systems off Mozambique in addition to the previously known Zambezi-Channel system and another hypothesized active system. The oldest part of the upper fan, located north of the present-day mouth of the Zambezi, was active from Late Cretaceous to Eocene times. Regional uplift caused an increased sediment flux that continued until Eocene times, allowing the fan to migrate southwards under the influence of bottom currents. Following the mid-Oligocene marine regression, the Beira High Channel-levee complex fed the Mozambique Fan from the southwest until Miocene times, reworking sediments from the shelf and continental slope into the distal abyssal fan. Since the Miocene, sediments have bypassed the shelf and upper fan region through the Zambezi Valley system directly into the Zambezi Channel. The morphology of the turbidite system off Mozambique is strongly linked to onshore tectonic events and the variations in sea level and sediment flux.  相似文献   
77.
In September 2007 Föllmi and coauthors requested the approval of four lithostratigraphic terms of the Swiss Committee of Stratigraphy (SCS). These terms were to be used in their publication on the Cretaceous in the Helvetic realm (Föllmi et al. 2007). At its meeting on October 18, 2007, the SCS decided the following: The Tierwis Formation (replacing the Drusberg Formation) was accepted, with the reserve that a section at Tierwis should be published in the near future. For the former “Lower Orbitolina Beds” the term Rawil Member was accepted, but here too a better type section than the one at Rawil Pass should be published. The term Rohrbachstein bed should not be used as a formal unit because it describes only a minor lithologic variation within the Grünten Member. The term Plaine Morte bed for a thin condensed horizon can not be accepted due to the fact that its definition is based mainly on biostratigraphy. Furthermore, the duplication a locality term which is in use for a previously established lithostratigraphic unit should be avoided.  相似文献   
78.
79.
This study compares the predictive accuracy of eight state‐of‐the‐art modelling techniques for 12 landforms types in a cold environment. The methods used are Random Forest (RF), Artificial Neural Networks (ANN), Generalized Boosting Methods (GBM), Generalized Linear Models (GLM), Generalized Additive Models (GAM), Multivariate Adaptive Regression Splines (MARS), Classification Tree Analysis (CTA) and Mixture Discriminant Analysis (MDA). The spatial distributions of 12 periglacial landforms types were recorded in sub‐Arctic landscape of northern Finland in 2032 grid squares at a resolution of 25 ha. First, three topographic variables were implemented into the eight modelling techniques (simple model), and then six other variables were added (three soil and three vegetation variables; complex model) to reflect the environmental conditions of each grid square. The predictive accuracy was measured by two methods: the area under the curve (AUC) of a receiver operating characteristic (ROC) plot, and the Kappa index (κ), based on spatially independent model evaluation data. The mean AUC values of the simple models varied between 0·709 and 0·796, whereas the AUC values of the complex model ranged from 0·725 to 0·825. For both simple and complex models GAM, GLM, ANN and GBM provided the highest predictive performances based on both AUC and κ values. The results encourage further applications of the novel modelling methods in geomorphology. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
80.
The calculation of ground water transit times is one important factor in ground water protection. In this paper, we present an analytical solution for the transit time for a Dupuit-type flow system applicable to saturated flow through a horizontal leaky aquifer discharging to a downgradient fixed-head boundary under steady-state conditions. We investigate the influence of leakage when comparing the resulting travel times of our model based on head-dependent leakage with the commonly used model with no leakage and a simplified model with constant leakage. The results show significant differences in the position of the water divide and transit time, suggesting that leakage cannot be ignored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号